A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four type...A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.展开更多
This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduce...This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.展开更多
This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of ...This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The infuence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.展开更多
The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the ma...The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the main phase was successfully synthesized via a hydrothermal method by using CFBFA as the raw material.The effects of hydrothermal temperature,time,and added CTAB amount on the characterizations of synthesized materials were investigated by XRD,SEM,and XPS.The properties of the optimal zeolitic material and its adsorption performance for Pb^(2+)in aqueous solution were evaluated.The influences of pH,initial concentration,dosage,and temperature on Pb^(2+)adsorption were also examined.Results revealed the following optimal parameters for the synthesis of zeolitic material:NaOH concentration of 2 mol·L^(-1),solid-to-liquid ratio of 1:10 g·ml^(-1),hydrothermal temperature of 110℃,hydrothermal time of 9 h,and CTAB amount of 1 g(per 100 ml solution).The adsorption capacities of the zeolitic material reached 329.67,424.69,and 542.22 mg·g^(-1) when the pH values of aqueous solution were 5,6,and 7,respectively.The Pb^(2+)removal efficiency can reach more than 99%in aqueous solution with the initial concentrations of 100-300 mg·L^(-1) under pH 6 and suitable adsorbent dosage.The adsorption and kinetics of Pb^(2+)on the zeolitic material can be described by Langmuir isotherm and pseudo-second-order kinetic models,respectively.The ion exchange between Pb^(2+)and Na^(+)and chemisorption are the main adsorption mechanism.All these findings imply that the synthesis of low-cost adsorbent for Pb^(2+)removal from weak acid and neutral aqueous solution provides a highly effective method to utilize CFBFA.展开更多
The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and sl...The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and slag from circulating fluidized bed boilers has a similar ultimate cracking load coefficient as the ordinary cement concrete and a higher bending moment limit.Under the same load,it has a smaller deformation than the ordinary concrete.展开更多
An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess...An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.展开更多
Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO<...Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered to be a stimulant for blast furnace slag (BFS). This study presents an experimental investigation of the compressive strength and heavy metal ions immobilization properties of cement-free materials comprising CFBA, BFS, and DSG. The feasibility of manufacturing foamed concrete using these materials was examined, and field test of foamed concrete was conducted. Experimentally, the flow, compressive strength, and heavy metal ions concentration were evaluated via inductively coupled plasma atomic emission spectroscopy (ICP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">AES) of the paste and foamed concrete. The experimental investigation revealed the self-healing hardening ability of fluidized bed boiler ash. In addition, the compressive strength was increased with the increasing replacement rates of BFS and DSG in the CFBA paste, and the compressive strength of 14.6</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">17.2 MPa was recorded over 28 days of curing. From the result obtained, the feasibility of manufacturing foamed concrete with a foam volume </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">120 L, incorporating the aforementioned materials, is confirmed. It was also found that after 28 days of age, a 7.9-MPa compressive strength of the foamed concrete was attained, and heavy metal ions elution in this foamed concrete was also significantly reduced. Therefore, CFBA, BFS, and DSG could be used as a binder for the foamed concrete.展开更多
This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).U...This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.展开更多
随着大量新能源发电的并网,火电机组循环流化床锅炉(circulating fluidized bed boiler, CFBB)参与电网调峰时,机组的负荷在不断变化,机组的安全性受到了挑战,研究调峰时锅炉受热面管的温度与应力是必要的。通过数值模拟的方法对深度调...随着大量新能源发电的并网,火电机组循环流化床锅炉(circulating fluidized bed boiler, CFBB)参与电网调峰时,机组的负荷在不断变化,机组的安全性受到了挑战,研究调峰时锅炉受热面管的温度与应力是必要的。通过数值模拟的方法对深度调峰运行下的二维膜式水冷壁管的温度、变形量和热应力进行分析。研究结果表明:CFBB深度调峰时热负荷由锅炉最大连续蒸发量(boiler maximum continuous rating, BMCR)至20%BMCR,膜式水冷壁管的温度、变形量和热应力都在逐渐减小;BMCR工况时,水冷壁管的温度、变形量和热应力最大分别为431.53℃、0.263 mm、131 MPa,均在水冷壁管材允许的范围内。热负荷由BMCR到20%BMCR和由20%BMCR到BMCR不断的调峰过程中,CFBB膜式水冷壁管的温度、变形量和热应力在不断交替变化,水冷壁管在交变的温度、变形量和热应力作用下疲劳损伤不断累积,最终因疲劳而失效。展开更多
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL–ChE–18B03)the Municipal Science and Technology Commission of Tianjin, China (2009ZCKFGX01900)。
文摘A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.
基金This paper is an introduction of a key laboratory of SP.
文摘This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.
基金Project supported by the National Natural Science Foundation of China (No. 90210034, 50576101,20221603)
文摘This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The infuence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.
基金supported by National Natural Science Foundation of China(22078181,U1810205)the Bidding Project of Shanxi Province(20191101007).
文摘The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the main phase was successfully synthesized via a hydrothermal method by using CFBFA as the raw material.The effects of hydrothermal temperature,time,and added CTAB amount on the characterizations of synthesized materials were investigated by XRD,SEM,and XPS.The properties of the optimal zeolitic material and its adsorption performance for Pb^(2+)in aqueous solution were evaluated.The influences of pH,initial concentration,dosage,and temperature on Pb^(2+)adsorption were also examined.Results revealed the following optimal parameters for the synthesis of zeolitic material:NaOH concentration of 2 mol·L^(-1),solid-to-liquid ratio of 1:10 g·ml^(-1),hydrothermal temperature of 110℃,hydrothermal time of 9 h,and CTAB amount of 1 g(per 100 ml solution).The adsorption capacities of the zeolitic material reached 329.67,424.69,and 542.22 mg·g^(-1) when the pH values of aqueous solution were 5,6,and 7,respectively.The Pb^(2+)removal efficiency can reach more than 99%in aqueous solution with the initial concentrations of 100-300 mg·L^(-1) under pH 6 and suitable adsorbent dosage.The adsorption and kinetics of Pb^(2+)on the zeolitic material can be described by Langmuir isotherm and pseudo-second-order kinetic models,respectively.The ion exchange between Pb^(2+)and Na^(+)and chemisorption are the main adsorption mechanism.All these findings imply that the synthesis of low-cost adsorbent for Pb^(2+)removal from weak acid and neutral aqueous solution provides a highly effective method to utilize CFBFA.
基金Funded by the Foundation of Scientific and Technological Project of Heilongjiang Province,China (GB01A3022)
文摘The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and slag from circulating fluidized bed boilers has a similar ultimate cracking load coefficient as the ordinary cement concrete and a higher bending moment limit.Under the same load,it has a smaller deformation than the ordinary concrete.
文摘An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.
文摘Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered to be a stimulant for blast furnace slag (BFS). This study presents an experimental investigation of the compressive strength and heavy metal ions immobilization properties of cement-free materials comprising CFBA, BFS, and DSG. The feasibility of manufacturing foamed concrete using these materials was examined, and field test of foamed concrete was conducted. Experimentally, the flow, compressive strength, and heavy metal ions concentration were evaluated via inductively coupled plasma atomic emission spectroscopy (ICP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">AES) of the paste and foamed concrete. The experimental investigation revealed the self-healing hardening ability of fluidized bed boiler ash. In addition, the compressive strength was increased with the increasing replacement rates of BFS and DSG in the CFBA paste, and the compressive strength of 14.6</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">17.2 MPa was recorded over 28 days of curing. From the result obtained, the feasibility of manufacturing foamed concrete with a foam volume </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">120 L, incorporating the aforementioned materials, is confirmed. It was also found that after 28 days of age, a 7.9-MPa compressive strength of the foamed concrete was attained, and heavy metal ions elution in this foamed concrete was also significantly reduced. Therefore, CFBA, BFS, and DSG could be used as a binder for the foamed concrete.
文摘This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.