To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic r...To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.展开更多
A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agen...A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.展开更多
The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the ma...The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the main phase was successfully synthesized via a hydrothermal method by using CFBFA as the raw material.The effects of hydrothermal temperature,time,and added CTAB amount on the characterizations of synthesized materials were investigated by XRD,SEM,and XPS.The properties of the optimal zeolitic material and its adsorption performance for Pb^(2+)in aqueous solution were evaluated.The influences of pH,initial concentration,dosage,and temperature on Pb^(2+)adsorption were also examined.Results revealed the following optimal parameters for the synthesis of zeolitic material:NaOH concentration of 2 mol·L^(-1),solid-to-liquid ratio of 1:10 g·ml^(-1),hydrothermal temperature of 110℃,hydrothermal time of 9 h,and CTAB amount of 1 g(per 100 ml solution).The adsorption capacities of the zeolitic material reached 329.67,424.69,and 542.22 mg·g^(-1) when the pH values of aqueous solution were 5,6,and 7,respectively.The Pb^(2+)removal efficiency can reach more than 99%in aqueous solution with the initial concentrations of 100-300 mg·L^(-1) under pH 6 and suitable adsorbent dosage.The adsorption and kinetics of Pb^(2+)on the zeolitic material can be described by Langmuir isotherm and pseudo-second-order kinetic models,respectively.The ion exchange between Pb^(2+)and Na^(+)and chemisorption are the main adsorption mechanism.All these findings imply that the synthesis of low-cost adsorbent for Pb^(2+)removal from weak acid and neutral aqueous solution provides a highly effective method to utilize CFBFA.展开更多
Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars ha...Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars have made contributions to improve the resource utilization of CFBFA.Especially,ecological cement is prepared by CFBFA,which is more conducive to its large-scale utilization.In recent years,a lot of effort has been paid to improve the properties of ecological cement containing CFBFA.In this work,the physicochemical properties of CFBFA are introduced,and recent research progress on the mechanical,expansion,and rheological properties of CFBFA based ecological cement(CEC)is extensively reviewed.The problem of over-expansion of f-CaO is summarized,which limits the scale application of CFBFA in ecological cement.Hence,the challenge for f-CaO in CFBFA to compensate for cement volume shrinkage is proposed,which is beneficial to the utilization of CFBFA in ecological cement,and the reduction of CO_(2) emissions from the cement industry.In addition,the environmental performance,durability,and economy of CEC should be valued in future research,especially the environmental performance,because the CFBFA contains heavy metals,such as Cr,As,which may pollute groundwater.展开更多
The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and sl...The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and slag from circulating fluidized bed boilers has a similar ultimate cracking load coefficient as the ordinary cement concrete and a higher bending moment limit.Under the same load,it has a smaller deformation than the ordinary concrete.展开更多
Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO<...Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered to be a stimulant for blast furnace slag (BFS). This study presents an experimental investigation of the compressive strength and heavy metal ions immobilization properties of cement-free materials comprising CFBA, BFS, and DSG. The feasibility of manufacturing foamed concrete using these materials was examined, and field test of foamed concrete was conducted. Experimentally, the flow, compressive strength, and heavy metal ions concentration were evaluated via inductively coupled plasma atomic emission spectroscopy (ICP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">AES) of the paste and foamed concrete. The experimental investigation revealed the self-healing hardening ability of fluidized bed boiler ash. In addition, the compressive strength was increased with the increasing replacement rates of BFS and DSG in the CFBA paste, and the compressive strength of 14.6</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">17.2 MPa was recorded over 28 days of curing. From the result obtained, the feasibility of manufacturing foamed concrete with a foam volume </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">120 L, incorporating the aforementioned materials, is confirmed. It was also found that after 28 days of age, a 7.9-MPa compressive strength of the foamed concrete was attained, and heavy metal ions elution in this foamed concrete was also significantly reduced. Therefore, CFBA, BFS, and DSG could be used as a binder for the foamed concrete.展开更多
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen...Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.展开更多
Rice husk is an organic silicon source for amorphous nano⁃silica particles.This paper reports the experimental study on the industrial production of nano⁃silica by rice husk combustion in a specially⁃designed 0.7 MW d...Rice husk is an organic silicon source for amorphous nano⁃silica particles.This paper reports the experimental study on the industrial production of nano⁃silica by rice husk combustion in a specially⁃designed 0.7 MW double⁃circulating fluidized bed(DCFB)based on acid pretreatment process.The physicochemical properties of RHA were characterized by various testing instruments.Results showed that acid pretreatment removed a large amount of metal impurities in the rice husk and thus inhibited the formation of crystalline silica or the agglomeration during the fluidized bed combustion process.The combustion efficiencies were as high as 99.5%.The obtained RHA comprised white fine particles and exhibited an amorphous structure,but factors such as collection point and acid type had certain influences on the quality of RHA.The highest SiO2 purity was greater than 98.6 wt.%,the lowest content of unburned carbon was 0.2 wt.%,the specific surface area reached 178 m2/g,and the pore size reached 5 nm.The circulating fluidized bed combustion of rice husk based on acid pretreatment can prepare nano⁃silica while providing heat for industrial processes,which is a highly energy⁃rich process.展开更多
Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hyd...Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.展开更多
In order to seek the effective method of increasing the coal combustion effi-ciency and to obtain the dcsign data for a certain kind of coal in fluidized bed combustors(FBCs),the experiments of coal combustion charact...In order to seek the effective method of increasing the coal combustion effi-ciency and to obtain the dcsign data for a certain kind of coal in fluidized bed combustors(FBCs),the experiments of coal combustion characteristics were conducted in a FBC facil-ity with the cross-section of 0.3m×0.3m and 6m in height.The variations of carbon con-tent of particles with recycle ratio,particle diameter,sample location and flow direction,the effects of bed temperature and fluidizing velocity on combustion efficiency and the va-riations of the temperature characteristic and combustion fraction in freeboard were inves-tigated.The experimental results indicate that using fly ash recycle not only can increasethe combustion efficiency,but also can improve the operation performances obviously.展开更多
The coal gasification fly ash(CGFA) is an industrial solid waste from coal gasification process and needs to be effectively disposed for environmental protection and resource utilization.To further clarify the feasibi...The coal gasification fly ash(CGFA) is an industrial solid waste from coal gasification process and needs to be effectively disposed for environmental protection and resource utilization.To further clarify the feasibility of CGFA to prepare porous carbon materials,the physicochemical properties of ten kinds of CGFA from circulating fluidized bed(CFB) gasifiers were analyzed in detail.The results of proximate and ultimate analysis show that the CGFA is characterized with the features of near zero moisture content,low volatile content as low as 0.90%-9.76%,high carbon content in the range of 37.89%-81.62%,and ultrafine particle size(d50=15.8-46.2 μm).The automatic specific surface area(SSA) and pore size analyzer were used to detect the pore structure,it is found that the pore structure of CGFA is relatively developed,and part of the CGFA has the basic conditions to be used directly as porous carbon materials.From SEM images,the microscopic morphology of the CGFA is significantly different,and they basically have the characteristics of loose and porous structure.XRD and Roman spectroscopy were used to characterize the carbon structure.The result shows that the CGFA contains abundant amorphous carbon structure,and thus the CGFA has a good reactivity and a potential to improve pore structure through further activation.Through thermal gravimetric analysis,it can be concluded that the order of reactivity of the CGFA under CO_(2) atmosphere has a good correlation with the degree of metamorphism of the raw coal.The gasification reactivity of the CGFA is generally consistent with the change trend of micropores combined with the pore structure.According to the physicochemical properties,the CGFA has a good application prospect in the preparation of porous carbon materials.展开更多
A new Kind of measuring method that may be used to measure high temperature circulating solid particles flux in a circulating fluidized bed boiler is studied in this paper. The measuring method is founded on the princ...A new Kind of measuring method that may be used to measure high temperature circulating solid particles flux in a circulating fluidized bed boiler is studied in this paper. The measuring method is founded on the principle of thermal equilibrium. A series of cold tests and hot tests were carried to optimize the structure and collocation of water-cooling tubes and showed that the method had the advantage of simple, accurate, reliable and good applicability for on-line "usage in a circulating fluidized bed boiler.展开更多
基金Project (2012BAF03B01) supported by the National Science and Technology Support Program of ChinaProject (2011AA060701) supported by the Hi-tech Research and Development Program of China
文摘To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.
基金Project(20120023110011) supported by Doctoral Program of Higher Education of ChinaProjects(2009KH09,2009QH02) supported by the Fundamental Research Funds for the Central Universities of China
文摘A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.
基金supported by National Natural Science Foundation of China(22078181,U1810205)the Bidding Project of Shanxi Province(20191101007).
文摘The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the main phase was successfully synthesized via a hydrothermal method by using CFBFA as the raw material.The effects of hydrothermal temperature,time,and added CTAB amount on the characterizations of synthesized materials were investigated by XRD,SEM,and XPS.The properties of the optimal zeolitic material and its adsorption performance for Pb^(2+)in aqueous solution were evaluated.The influences of pH,initial concentration,dosage,and temperature on Pb^(2+)adsorption were also examined.Results revealed the following optimal parameters for the synthesis of zeolitic material:NaOH concentration of 2 mol·L^(-1),solid-to-liquid ratio of 1:10 g·ml^(-1),hydrothermal temperature of 110℃,hydrothermal time of 9 h,and CTAB amount of 1 g(per 100 ml solution).The adsorption capacities of the zeolitic material reached 329.67,424.69,and 542.22 mg·g^(-1) when the pH values of aqueous solution were 5,6,and 7,respectively.The Pb^(2+)removal efficiency can reach more than 99%in aqueous solution with the initial concentrations of 100-300 mg·L^(-1) under pH 6 and suitable adsorbent dosage.The adsorption and kinetics of Pb^(2+)on the zeolitic material can be described by Langmuir isotherm and pseudo-second-order kinetic models,respectively.The ion exchange between Pb^(2+)and Na^(+)and chemisorption are the main adsorption mechanism.All these findings imply that the synthesis of low-cost adsorbent for Pb^(2+)removal from weak acid and neutral aqueous solution provides a highly effective method to utilize CFBFA.
基金financially supported by the National Natural Science Foundation of China(Nos.52074035 and 52008229)the Key Technologies Research and Develo pment Program,China(No.2020YFB0606200)。
文摘Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars have made contributions to improve the resource utilization of CFBFA.Especially,ecological cement is prepared by CFBFA,which is more conducive to its large-scale utilization.In recent years,a lot of effort has been paid to improve the properties of ecological cement containing CFBFA.In this work,the physicochemical properties of CFBFA are introduced,and recent research progress on the mechanical,expansion,and rheological properties of CFBFA based ecological cement(CEC)is extensively reviewed.The problem of over-expansion of f-CaO is summarized,which limits the scale application of CFBFA in ecological cement.Hence,the challenge for f-CaO in CFBFA to compensate for cement volume shrinkage is proposed,which is beneficial to the utilization of CFBFA in ecological cement,and the reduction of CO_(2) emissions from the cement industry.In addition,the environmental performance,durability,and economy of CEC should be valued in future research,especially the environmental performance,because the CFBFA contains heavy metals,such as Cr,As,which may pollute groundwater.
基金Funded by the Foundation of Scientific and Technological Project of Heilongjiang Province,China (GB01A3022)
文摘The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and slag from circulating fluidized bed boilers has a similar ultimate cracking load coefficient as the ordinary cement concrete and a higher bending moment limit.Under the same load,it has a smaller deformation than the ordinary concrete.
文摘Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered to be a stimulant for blast furnace slag (BFS). This study presents an experimental investigation of the compressive strength and heavy metal ions immobilization properties of cement-free materials comprising CFBA, BFS, and DSG. The feasibility of manufacturing foamed concrete using these materials was examined, and field test of foamed concrete was conducted. Experimentally, the flow, compressive strength, and heavy metal ions concentration were evaluated via inductively coupled plasma atomic emission spectroscopy (ICP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">AES) of the paste and foamed concrete. The experimental investigation revealed the self-healing hardening ability of fluidized bed boiler ash. In addition, the compressive strength was increased with the increasing replacement rates of BFS and DSG in the CFBA paste, and the compressive strength of 14.6</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">17.2 MPa was recorded over 28 days of curing. From the result obtained, the feasibility of manufacturing foamed concrete with a foam volume </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">120 L, incorporating the aforementioned materials, is confirmed. It was also found that after 28 days of age, a 7.9-MPa compressive strength of the foamed concrete was attained, and heavy metal ions elution in this foamed concrete was also significantly reduced. Therefore, CFBA, BFS, and DSG could be used as a binder for the foamed concrete.
基金financially supported by the Special Research Assistant Fund Project of Chinese Academy of Sciences.
文摘Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.
文摘Rice husk is an organic silicon source for amorphous nano⁃silica particles.This paper reports the experimental study on the industrial production of nano⁃silica by rice husk combustion in a specially⁃designed 0.7 MW double⁃circulating fluidized bed(DCFB)based on acid pretreatment process.The physicochemical properties of RHA were characterized by various testing instruments.Results showed that acid pretreatment removed a large amount of metal impurities in the rice husk and thus inhibited the formation of crystalline silica or the agglomeration during the fluidized bed combustion process.The combustion efficiencies were as high as 99.5%.The obtained RHA comprised white fine particles and exhibited an amorphous structure,but factors such as collection point and acid type had certain influences on the quality of RHA.The highest SiO2 purity was greater than 98.6 wt.%,the lowest content of unburned carbon was 0.2 wt.%,the specific surface area reached 178 m2/g,and the pore size reached 5 nm.The circulating fluidized bed combustion of rice husk based on acid pretreatment can prepare nano⁃silica while providing heat for industrial processes,which is a highly energy⁃rich process.
基金Funded by the National Natural Science Foundation of China(Nos.51132010 and 51272222)the Programs for Science and Technology Development of Yantai City,Shandong Province,China(No.2012ZH249)
文摘Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.
文摘In order to seek the effective method of increasing the coal combustion effi-ciency and to obtain the dcsign data for a certain kind of coal in fluidized bed combustors(FBCs),the experiments of coal combustion characteristics were conducted in a FBC facil-ity with the cross-section of 0.3m×0.3m and 6m in height.The variations of carbon con-tent of particles with recycle ratio,particle diameter,sample location and flow direction,the effects of bed temperature and fluidizing velocity on combustion efficiency and the va-riations of the temperature characteristic and combustion fraction in freeboard were inves-tigated.The experimental results indicate that using fly ash recycle not only can increasethe combustion efficiency,but also can improve the operation performances obviously.
基金This work was financially supported by the Special Research Assistant Fund Project of Chinese Academy of Sciences.
文摘The coal gasification fly ash(CGFA) is an industrial solid waste from coal gasification process and needs to be effectively disposed for environmental protection and resource utilization.To further clarify the feasibility of CGFA to prepare porous carbon materials,the physicochemical properties of ten kinds of CGFA from circulating fluidized bed(CFB) gasifiers were analyzed in detail.The results of proximate and ultimate analysis show that the CGFA is characterized with the features of near zero moisture content,low volatile content as low as 0.90%-9.76%,high carbon content in the range of 37.89%-81.62%,and ultrafine particle size(d50=15.8-46.2 μm).The automatic specific surface area(SSA) and pore size analyzer were used to detect the pore structure,it is found that the pore structure of CGFA is relatively developed,and part of the CGFA has the basic conditions to be used directly as porous carbon materials.From SEM images,the microscopic morphology of the CGFA is significantly different,and they basically have the characteristics of loose and porous structure.XRD and Roman spectroscopy were used to characterize the carbon structure.The result shows that the CGFA contains abundant amorphous carbon structure,and thus the CGFA has a good reactivity and a potential to improve pore structure through further activation.Through thermal gravimetric analysis,it can be concluded that the order of reactivity of the CGFA under CO_(2) atmosphere has a good correlation with the degree of metamorphism of the raw coal.The gasification reactivity of the CGFA is generally consistent with the change trend of micropores combined with the pore structure.According to the physicochemical properties,the CGFA has a good application prospect in the preparation of porous carbon materials.
文摘A new Kind of measuring method that may be used to measure high temperature circulating solid particles flux in a circulating fluidized bed boiler is studied in this paper. The measuring method is founded on the principle of thermal equilibrium. A series of cold tests and hot tests were carried to optimize the structure and collocation of water-cooling tubes and showed that the method had the advantage of simple, accurate, reliable and good applicability for on-line "usage in a circulating fluidized bed boiler.