期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Study on Influencing Factors of Methane Production Efficiency of Microbial Electrolytic Cell with CO_(2) as Carbon Source
1
作者 Qifen Li Yuanbo Hou +2 位作者 Yongwen Yang Liting Zhang Xiaoxiao Yan 《Journal of Renewable Materials》 EI 2023年第8期3333-3350,共18页
Reducing CO_(2) to produce methane through microbial electrolytic cell(MEC)is one of the important methods of CO_(2) resource utilization.In view of the problem of low methanogenesis rate and weak CO_(2) conversion ra... Reducing CO_(2) to produce methane through microbial electrolytic cell(MEC)is one of the important methods of CO_(2) resource utilization.In view of the problem of low methanogenesis rate and weak CO_(2) conversion rate in the reduction process,theflowfield environment of the cathode chamber is changed by changing the upper gas cir-culation rate and the lower liquid circulation rate of the cathode chamber to explore the impact on the reactor startup and operation and products.The results showed that under certain conditions,the CO_(2) consumption and methane production rate could be increased by changing the upper gas recirculation rate alone,but the increase effect was not obvious,but the by-product hydrogen production decreased significantly.Changing the lower liquid circulation rate alone can effectively promote the growth of biofilm,and change the properties of biofilm at the later stage of the experiment,with the peak current density increased by 16%;The methanogenic rate decreased from the peak value of 0.561 to 0.3 mmol/d,and the CO_(2) consumption did not change signifi-cantly,which indicated that CO_(2) was converted into other organic substances instead of methane.The data after coupling the upper gas circulation rate with the lower liquid circulation rate is similar to that of only changing the lower liquid circulation rate,but changing the upper gas circulation rate can alleviate the decline of methane pro-duction rate caused by the change of biofilm properties,which not only improves the current density,but also increases the methane production rate by 0.05 mmol/d in the stable period.This study can provide theoretical and technical support for the industrial application scenario offlowfield regulation intervention of microbial elec-trolytic cell methanogenesis. 展开更多
关键词 BIOMETHANATION microbial electrolytic cell gas circulation rate liquid circulation rate methane production
下载PDF
Effect of H_2O(g)Content in Circulating Flue Gas on Iron Ore Sintering with Flue Gas Recirculation 被引量:8
2
作者 Xu-ling CHEN Yun-song HUANG +3 位作者 Min GAN Xiao-hui FAN Zhi-yuan YU Li-shun YUAN 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第12期1107-1112,共6页
The influence of H2O (g) content in circulating flue gas on sintering was studied by simulating the flue gas circulating sintering. The results show that the burning speed of solid fuel and the heat transfer rate du... The influence of H2O (g) content in circulating flue gas on sintering was studied by simulating the flue gas circulating sintering. The results show that the burning speed of solid fuel and the heat transfer rate during sintering process are improved when the H2O (g) content increases from 0 to 6%, which accelerates the sintering speed. However, when the H2O (g) content exceeds 6 %, the over-wet zone in sinter bed is thickened, which deteriorates the permeability of sintering bed. In addition, the magnetite content in sinter increases, while the acicular calcium ferrite content decreases. Accordingly, the sinter yield and tumble index decrease with excessive H2O (g) content. To guarantee the yield and quality of sinter, the favourable H2O (g) content in circulating flue gas should be controlled to be less than 6%. 展开更多
关键词 flue gas circulating sintering burning speed heat front flame front SINTER
原文传递
Influence of O_2 Content in Circulating Flue Gas on Iron Ore Sintering 被引量:14
3
作者 FAN Xiao-hui YU Zhi-yuan +2 位作者 GAN Min LI Wen-qi JI Zhi-yun 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第6期1-6,共6页
Circulating flue gas can reduce the emission of flue gas , and furthermore , it can reuse the waste heat effectively in the sintering process.Compared with conventional sintering , O2 that gets through the sintering b... Circulating flue gas can reduce the emission of flue gas , and furthermore , it can reuse the waste heat effectively in the sintering process.Compared with conventional sintering , O2 that gets through the sintering bed decreases because of substituting circulating gas for air.The influences of O2 content on sintering process are studied through simulating the flue gas circulation sintering with artificial gas.It shows that , with the reducing of O2 content in circulating gas , the combustion speed of fuel decreases and incomplete combustion degree increases , which makes the flame front fall behind the heat front and reduces the heat utilization efficiency of fuel.The ultimate result is that the temperature of sintering bed decreases and the liquid phase reduces.In addition , the reducing atmosphere is strengthened because of flue gas circulation , which makes the magnetite increase yet calcium ferrite reduce gradually. Because the content of calcium ferrite with good strength reduces , the sinter yield and tumble strength decrease.To ensure the sinter index , the favorable O2 content of circulating flue gas is no less than 15%. 展开更多
关键词 flue gas circulation sintering heat front flame front sintering metallogenium
原文传递
Hydrodynamic behavior of an internally circulating fluidized bed with tubular gas distributors 被引量:1
4
作者 Wenli Zhao Tiefeng Wang +1 位作者 Chenjing Wang Zuoliang Sha 《Particuology》 SCIE EI CAS CSCD 2013年第6期664-672,共9页
To better understand the hydrodynamic behavior of an internally circulating fluidized bed, solids holdup in the down-comer (Eso), solids circulation rate (Gs) and gas bypassing fraction (from down-comer to riser ... To better understand the hydrodynamic behavior of an internally circulating fluidized bed, solids holdup in the down-comer (Eso), solids circulation rate (Gs) and gas bypassing fraction (from down-comer to riser y^R, and from riser to down-comer yRD) were experimentally studied. The effects of gas velocities in the riser and in the down-comer (UR and UD), orifice diameter in the draft tube (dor), and draft tube height (HR) were investigated. Experimental results showed that increase of gas velocities led to increase in Gs and yDR, and slight decrease in yeD. Larger orifice diameter on the draft tube led to higher 8sD, Gs and yDR, but had insignificant influence on YRD. with increasing draft tube height, both Gs and YDR first increased and then decreased, while yRD first decreased and then increased. Proposed correlations for predicting the hydrodynamic parameters agreed reasonably well with experimental values. 展开更多
关键词 Internally circulating fluidized bed Solids holdup Solids circulation rate gas bypassing fraction
原文传递
Activity and characteristics of "Oxygen-enriched" highly reactive absorbent for simultaneous flue gas desulfurization and denitrification 被引量:2
5
作者 Yi ZHAO Tianxiang GUO Zili ZANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第2期222-229,共8页
An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was car... An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was carried out using this absorbent in a flue gas circulating fluidized bed (CFB). The highest simultaneous removal efficiency, 94.5% of SO2 and 64.2% of NO, was achieved under the optimal experiment conditions. Scanning Electron Microscope (SEM) and Accessory X-ray Energy Spectrometer (EDX) were used to observe the surface characteristics of fly ash, lime, "Oxygen-enriched" highly reactive absorbent and the spent absorbent. An ion chromatograph (IC) and chemical analysis methods were used to determine the contents of sulfate, sulfite, nitrate and nitrite in the spent absorbents, the results showed that sulfate and nitrite were the main products for desulfurization and denitrification respectively. The mechanism of removing SO2 and NO simultaneously was proposed based on the analysis results of SEM, EDX, IC and the chemical analysis methods. 展开更多
关键词 "Oxygen-enriched" highly reactive absorbent Surface characteristics Flue gas circulating fluidized bed Simultaneous desulfurization and denitrification
原文传递
Application of Ejector in Solid Oxide Fuel Cell Anode Circulation System 被引量:1
6
作者 LI Dongdong ZHAO Hongxia +1 位作者 KONG Fanchen ZHANG Guanmin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第3期634-649,共16页
As a new generation fuel cell,solid oxide fuel cell(SOFC)has become a hot spot in the industry due to its unique advantages.In order to improve energy utilization and prevent carbon deposition in the reformer,the ejec... As a new generation fuel cell,solid oxide fuel cell(SOFC)has become a hot spot in the industry due to its unique advantages.In order to improve energy utilization and prevent carbon deposition in the reformer,the ejector is usually used to recover the cell anode exhaust.In this paper,the applications related to ejector in SOFC are reviewed,including the ejector design and optimization methods,the ejector performance verification experiment and the performance of ejector in SOFC systems.Besides,in order to adapt to the wide power output characteristics of the stack,a study on extending the working range of the ejector is also introduced.On the one hand,the theory of optimal design of ejector used in SOFC system is obtained,including the influence of main structure parameters of ejector on the performance of the whole system and the theoretical model of performance monitoring of ejector used in SOFC.On the other hand,it is proved that the ejector used in SOFC power system can prevent the occurrence of carbon deposition problems,while the recovery of exhaust heat can improve the energy utilization of the system.Finally,suggestions for future related research work are given,aiming to promote the ejector-based SOFC system to provide higher and more stable performance in the future. 展开更多
关键词 EJECTOR Solid Oxide Fuel Cell gas circulation APPLICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部