Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly ...Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly increase power capture of a VAWT using constant CC jet momentum, but a practical method of minimizing CC usage has yet to be explored. In addition, VAWTs are typically limited in power capture performance either by a maximum peak at a small set of TSR or wide operating TSR at fractions of the peak performance based on the design solidity. Both the reduced jet usage and solidity limitation were addressed by developing a method of dynamically using CC to perform a virtual solidity change. The developed method described within this work used CC to change blade aerodynamics to specifically match a maximum performing static solidity or wake shape at a given TSR. Simulation results using an existing aerodynamics model indicated a significant reduction in the re-quired CC jet momentum compared to a constant CC system along with control over power capture for a CC-VAWT.展开更多
A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental invest...A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental investigations were carried out by varying amount of added particles(0-2%), circulation flow rate(2.15-5.16 m^3/h) and heat flux(8-16 kW/m^2). The comparison of heat transfer performance in different vertical heights of the horizontal bed was also discussed. Results reveal that the glass bead particle can enhance heat transfer compared with vapor-liquid two-phase flow for all beds. At a low heat flux(q = 8 kW/m), the heat-transfer-enhancing factor of the horizontal bed is obviously greater than those of the up-flow and down-flow beds. With the increase in the amount of added particles, the heat-transfer-enhancing factors of the up-flow and down-flow beds increase, whereas that of the horizontal bed initially increases and then decreases. However, at a high heat flux(q=16 kW/m), the heat-transfer-enhancing factors of the three beds show an increasing tendency with the increase in the amount of added particles and become closer than those at a low heat flux. For all beds, the heat-transfer-enhancing factor generally increases with the circulation flow rate but decreases with the increase in heat flux.展开更多
以50 k W潮流能水平轴水轮机为例进行叶片设计,采用计算流体力学软件Fluent分别模拟全湿流模型和空化流模型的水轮机水动力学性能,数值模拟结果表明水轮机运行过程中存在空化现象,空化首先发生在背流面叶片尖端,由叶片尖端向叶片中部发...以50 k W潮流能水平轴水轮机为例进行叶片设计,采用计算流体力学软件Fluent分别模拟全湿流模型和空化流模型的水轮机水动力学性能,数值模拟结果表明水轮机运行过程中存在空化现象,空化首先发生在背流面叶片尖端,由叶片尖端向叶片中部发展,空化的发生可降低水轮机的功率系数和扭矩系数,增大水轮机的轴向力系数,工程上应采取相应的措施。展开更多
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
文摘Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly increase power capture of a VAWT using constant CC jet momentum, but a practical method of minimizing CC usage has yet to be explored. In addition, VAWTs are typically limited in power capture performance either by a maximum peak at a small set of TSR or wide operating TSR at fractions of the peak performance based on the design solidity. Both the reduced jet usage and solidity limitation were addressed by developing a method of dynamically using CC to perform a virtual solidity change. The developed method described within this work used CC to change blade aerodynamics to specifically match a maximum performing static solidity or wake shape at a given TSR. Simulation results using an existing aerodynamics model indicated a significant reduction in the re-quired CC jet momentum compared to a constant CC system along with control over power capture for a CC-VAWT.
基金supported by Tianjin Municipal Science and Technology Commission, China (No. 2009ZCKFGX01900)
文摘A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental investigations were carried out by varying amount of added particles(0-2%), circulation flow rate(2.15-5.16 m^3/h) and heat flux(8-16 kW/m^2). The comparison of heat transfer performance in different vertical heights of the horizontal bed was also discussed. Results reveal that the glass bead particle can enhance heat transfer compared with vapor-liquid two-phase flow for all beds. At a low heat flux(q = 8 kW/m), the heat-transfer-enhancing factor of the horizontal bed is obviously greater than those of the up-flow and down-flow beds. With the increase in the amount of added particles, the heat-transfer-enhancing factors of the up-flow and down-flow beds increase, whereas that of the horizontal bed initially increases and then decreases. However, at a high heat flux(q=16 kW/m), the heat-transfer-enhancing factors of the three beds show an increasing tendency with the increase in the amount of added particles and become closer than those at a low heat flux. For all beds, the heat-transfer-enhancing factor generally increases with the circulation flow rate but decreases with the increase in heat flux.
文摘以50 k W潮流能水平轴水轮机为例进行叶片设计,采用计算流体力学软件Fluent分别模拟全湿流模型和空化流模型的水轮机水动力学性能,数值模拟结果表明水轮机运行过程中存在空化现象,空化首先发生在背流面叶片尖端,由叶片尖端向叶片中部发展,空化的发生可降低水轮机的功率系数和扭矩系数,增大水轮机的轴向力系数,工程上应采取相应的措施。