期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Influence of external circulation on sludge characteristics during start-up of internal circulation reactor 被引量:4
1
作者 丁建南 王淀佐 《Journal of Central South University of Technology》 EI 2005年第4期425-429,共5页
The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of gr... The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulationadded IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulationadded IC reactor started 26 d ago reaches 358.23mL·g -1 ·d -1 , 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively. 展开更多
关键词 external circulation internal circulation reactor characteristics of granular sludge
下载PDF
Treatment of methanol wastewater in external circulation anaerobic reactor with different inoculums 被引量:1
2
作者 韩洪军 王伟 +1 位作者 马文成 袁敏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第4期51-55,共5页
In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate... In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate the inoculums of anaerobic granular sludge and anaerobic digested sludge,focusing on the efficiency and process stability.The effect of impact concentration and temperature on the performance was studied.The results demonstrated that anaerobic granular sludge as the inoculums could complete the start-up more rapidly than the anaerobic digested sludge,and above 90% COD removal were achieved at the organic loading rate of 10 to 15 kgCOD/(m3·d).The effect of impact COD on the methanogenic activity of sludge was weak and the removal efficiencies recovered gradually in the two reactors.The COD removal efficiencies reduced swiftly to 50%-60% due to the impact temperature.The results indicated that the complex bacterial groups in anaerobic digested sludge benefited to enhance the reactor's capacity for withstanding the temperature shock at some extent. 展开更多
关键词 methanol wastewater external circulation anaerobic reactor STABILITY granular sludge anaerobic digested sludge
下载PDF
Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor 被引量:3
3
作者 Yu-Mei Liu Yan Zhou +3 位作者 Wen-Qiang Gong Zhang-Min Li Chao-Li Wang Duan-Jian Tao 《Green Energy & Environment》 SCIE CSCD 2020年第2期147-153,共7页
The catalysis of ionic liquids (ILs) in the traditional stirred reactor suffers from insufficient mass and heat transfer, which always needs a long reaction time and results in a low reaction rate. In this work, highl... The catalysis of ionic liquids (ILs) in the traditional stirred reactor suffers from insufficient mass and heat transfer, which always needs a long reaction time and results in a low reaction rate. In this work, highly efficient synthesis of 1-methoxy-2-propanol via the alcoholysis reaction of propylene oxide (PO) with methanol was proposed and achieved by the combination of micro-tubular circulating reactor with the IL [N4444] [Buty] catalyst. Compared with the stirred reactor, the rate of alcoholysis reaction in a micro-tubular circulating reactor was found to be significantly improved. The reaction time was remarkably shortened to 20 min from 180 min as well as the yield of 1-methoxy-2-propanol reached 92%. Moreover, the kinetic study further demonstrated that the main reaction rate to 1-methoxy-2-propanol (K1) was about 20 times larger than the side reaction rate to byproduct 2-methoxy-1-propanol (K2) in the temperature range of 363–383 K. Such combination of micro-tubular circulating reactor with IL catalysts is believed to be a class of effective process intensification technique for highly efficient synthesis of 1-methoxy-2-propanol. 展开更多
关键词 Ionic liquids Micro-tubular circulating reactor ALCOHOLYSIS Propylene oxide 1-Methoxy-2-propanol
下载PDF
Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture 被引量:1
4
作者 Yefeng Zhou Yifan Han +7 位作者 Yujian Lu Hongcun Bai Xiayi Hu Xincheng Zhang Fanghua Xie Xiao Luo Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期2955-2967,共13页
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.... Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR. 展开更多
关键词 Two-and three-dimensional simulations Circulating fluidized bed reactor Carbon dioxide adsorption Computational fluid dynamics Operating conditions
下载PDF
Flow Field of Circulating Fluidized Bed Reactor with Venturi Inlet Configuration
5
作者 胡金榜 李艳平 陈安新 《Transactions of Tianjin University》 EI CAS 2005年第2期106-109,共4页
Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the exper... Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the experimental data. It has been shown that the simulation results from the standard k-ε model have the best match with the experimental data. Based on this model, the gas flow field in the venturi diffuser and riser was analyzed by the concept of velocity nonuniformity and dead zone percentage. Both the nonuniformity of gas velocity and the dead zone percentage reach the maximum at the venturi outlet due to the effect of the vortex. At the same time, it provides a good platform for the further optimization of the inlet configuration of circulating fluidized bed reactor. 展开更多
关键词 circulating fluidized bed reactor venturi gas distributor numerical simulation velocity nonuniformity dead zone percentage
下载PDF
Cold-modeling study of a circulating fluidized bed reactor for flue gas desulfurization (FGD)
6
作者 Qian, Feng Liu, Tong-Guang Zhang, Zhen-Fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第2期88-94,共7页
Short residence time of the sorbent in the gas stream and formation of a dense layer of reaction product surrounding its surface influence the sulfur removal efficiency. A practical means of improving the process perf... Short residence time of the sorbent in the gas stream and formation of a dense layer of reaction product surrounding its surface influence the sulfur removal efficiency. A practical means of improving the process performance is to employ fluidized bed reaction in replacement of entrained bed reaction on normally used in cool side desulfurizaiton. This paper describes cold modeling study of a circulating fluidized bed reactor. Several aspects of the problem are discussed: fluidization behavior of CaO, attrition of the sorbent and solids entrainment from the fluidized bed. Mechanisms and key controlling parameters are identified, and an integral model based on rate of attrition and mass balance is developed for predicting steady state mass flows and particle size distributions of the system. A process flow scheme is finally presented for conducting desulfurization tests in the second stage of the study. 展开更多
关键词 circulating fluidized bed reactor flue gas desulfurization cold modeling study CLC number: X701 Document code: A
下载PDF
Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system 被引量:13
7
作者 Tao Wang Zhenxing Huang +3 位作者 Wenquan Ruan Mingxing Zhao Youlian Shao Hengfeng Miao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第2期227-234,共8页
In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which ... In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates(OLR) of 21.06–25.16 kg chemical oxygen demand(COD)/(m3? day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50 m3/kg COD.The formation of extracellular polymeric substances(EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7 mg/g Volatile Suspended Solid(VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from-26.2 m V and 30.35% to-10.6 m V and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy(3 D-EEM) and Fourier transform infrared spectroscopy(FT-IR)analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation. 展开更多
关键词 Internal circulation reactor LEACHATE Sludge granulation Extracellular polymeric substances External circulation
原文传递
Treatment of methanol wastewater with two-stage and two-phase anaerobic process
8
作者 韩洪军 马文成 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期65-69,共5页
The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test ... The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant. 展开更多
关键词 methanol wastewater two-stage and two-phase anaerobic process (TSTP) external circulation anaerobic reactor (EC) hydrolytic acidification reactor
下载PDF
Particle size distribution in a multi-zone circulating fluidized bed polymerization reactor
9
作者 Mohammadhossein Hadadiyan Navid Mostoufi Reza Marandi 《Particuology》 SCIE EI CAS CSCD 2024年第10期291-299,共9页
This research focuses on modeling a multi-zone circulating reactor(MZCR)in the polypropylene production process.In these reactors,designed for polyolefin production,small catalyst particles(20–300μm)initiate polymer... This research focuses on modeling a multi-zone circulating reactor(MZCR)in the polypropylene production process.In these reactors,designed for polyolefin production,small catalyst particles(20–300μm)initiate polymerization in the presence of monomer gas.The reactor consists of two main regions:the riser and the downer.The riser operates in the fast fluidization and the downer is in the moving bed regime.Employing the two-fluid model with the Eulerian-Eulerian approach,the dynamics of both solid and gas phases were modeled by applying Newton's laws of motion and assuming spherical particles.The population balance of particles within the reactor was also coupled with the equations of motion.The simultaneous solution of these equations provides valuable insights into particle and fluid behavior,revealing trends such as the growth of polymer particles.Furthermore,the impact of various operating conditions was explored.This study also examined the effects of design parameters(gas inlet velocity,average inlet diameter,and temperature)on the system performance.For instance,it was shown that in the case where the solid circulation flux is 30 kg/(m^(2) s)the velocity of particles in the bed increases from 0.4 at the inlet to 1.1 m/s in the fully developed zone,when it is 43 kg/(m^(2) s)the velocity of particles increases from 0.3 to 1.4 m/s,and when it is 55 kg/(m^(2) s),it is increased from 0.22 to 1.5 m/s.Additionally,trends in particle size distribution based on temperature adjustments were revealed.This study showed that higher temperatures accelerate the polymerization reaction rate,promoting faster growth kinetics and the formation of larger particles. 展开更多
关键词 FLUIDIZATION POLYMERIZATION Gas-solid flow Multi-zone circulating reactor(MZCR) CFD-PBM Two-fluidmodel
原文传递
Numerical Study on the Process of Chemical Looping Hydrogen Production with Multiple Circulating Fluidized Bed Reactors
10
作者 SUN Liyan YIN Fan +3 位作者 CAO Jialei GAO Zixiang XIAO Rui WANG Haiou 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第5期1945-1954,共10页
Hydrogen is an attractive energy carrier due to the high conversion efficiency and low pollutant emission.Chemical looping hydrogen production(CLHP)is an available way for producing high purity hydrogen with relativel... Hydrogen is an attractive energy carrier due to the high conversion efficiency and low pollutant emission.Chemical looping hydrogen production(CLHP)is an available way for producing high purity hydrogen with relatively low penalty energy and CO_(2)is captured simultaneously.Three reactors are usually contained for CLHP system including air reactor(AR),fuel reactor(FR)and steam reactor(SR).In current work,we focus on the performance of CLHP system,which is the basement for operation and design.Numerical simulations are carried out for analyzing the flow behavior and the numerical structure is built according to the experimental unit constructed at Southeast University,China.Results show that the operation of L-valve influences most the solid circulating rate of system and particles pass L-valve easily with large aeration rate.Mass distribution results indicate that fuel reactor has the capacity for particles storage.Increase of gas inlet rate of steam reactor leads to more particles leave steam reactor and accumulate into fuel reactor.L-valve can prevent the gas leakage between reactors and it will be adopted for reactive unit.Combining the operation of fuel reactor and L-valve,the system can reach steady state and get the regulating ability. 展开更多
关键词 chemical looping hydrogen production circulating fluidized bed reactor numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部