期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research progress and prospect of plugging technologies for fractured formation with severe lost circulation 被引量:6
1
作者 SUN Jinsheng BAI Yingrui +6 位作者 CHENG Rongchao LYU Kaihe LIU Fan FENG Jie LEI Shaofei ZHANG Jie HAO Huijun 《Petroleum Exploration and Development》 CSCD 2021年第3期732-743,共12页
By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured f... By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction. 展开更多
关键词 severe lost circulation lost circulation control mechanism lost circulation materials lost circulation control technology drilling fluid lost circulation plugging technologies progress
下载PDF
Analysis on Pore-Forming Pouring Pile Construction Technology of House Building Project
2
作者 Lili Hu 《Open Journal of Civil Engineering》 2016年第4期697-703,共8页
Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and... Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction. 展开更多
关键词 Building Construction Pore-Forming Pouring Pile Normal circulation Rotary Drilling Holes Forming technology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部