The atmospheric circulation over the mid-high latitudes in Asia has an important influence on regional climate,yet its long-term variation has not been fully explored.The main task of this study is to reveal the inter...The atmospheric circulation over the mid-high latitudes in Asia has an important influence on regional climate,yet its long-term variation has not been fully explored.The main task of this study is to reveal the interdecadal variation features of summer atmospheric circulation over Asian mid-high latitudes in recent decades.The results show that the atmospheric circulation over mid-high latitudes of Asia has stronger interdecadal fluctuations than that over low latitudes and one significant change center appears near Lake Baikal.It is found that the atmospheric circulation near Lake Baikal has a significant interdecadal change around 1996 and a deep anomalous anticyclonic circulation has been controlling this region since then,which contributes to the significant increase in the surface temperature near Lake Baikal since 1997 and makes the region a remarkable warming center in Asia in recent 40 years.During 1997-2015,the pattern of less precipitation in the north and more precipitation in the south of east China is closely related to the anomalous anticyclonic circulation near Lake Baikal.Especially,this anomalous circulation near Lake Baikal has been found to contribute to the obvious interdecadal decrease of the precipitation in northeast China and north China near1997.The sea surface temperature(SST)of northwestern Atlantic is an important influence factor to the interdecadal change in the atmospheric circulation near Lake Baikal around 1996.展开更多
This study investigated the contributions of mid–high-latitude circulation anomalies to the extremely hot summer(July and August;JA)of 2018 over Northeast Asia(NEA).The JA-mean surface air temperature in 2018 was 1.2...This study investigated the contributions of mid–high-latitude circulation anomalies to the extremely hot summer(July and August;JA)of 2018 over Northeast Asia(NEA).The JA-mean surface air temperature in 2018 was 1.2°C higher than that of the 1979–2018 climatology,with the amplitude of such an anomaly almost doubling the interannual standard deviation,making 2018 the hottest year during the analysis period 1979–2018.The abnormal warming over NEA was caused by a local positive geopotential height anomaly reaching strongest intensity in JA 2018.Further investigation suggested that the upper-tropospheric circulation anomalies over northern Europe and the Caspian Sea were crucial to forming this NEA circulation anomaly through initiating downstream wave trains.Particularly,the geopotential heights over these two regions were concurrently at their highest in JA 2018,and therefore jointly contributed to the profound circulation anomaly over NEA and the hottest summer on record.Due to these two teleconnection patterns,the temperature anomalies in NEA are closely related to those in both northern Europe and the Caspian Sea,where the similarly extreme warming also happened in 2018.展开更多
This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(lan...This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.展开更多
Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess f...Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess future changes in surface air temperature,precipitation and Köppen-Trewartha(K-T)climate types in Northern Asia under the 1.5-4℃global warming targets.RegCM4 is driven by five CMIP5 global models over an East Asia domain at a grid spacing of 25 km.Validation of the present day(1986-2005)simulations shows that the ensembles of RegCM4(ensR)and driving GCMs(ensG)reproduce the major characters of the observed temperature,precipitation and K-T climate zones reasonably well.Greater and more realistic spatial detail is found in RegCM4 compared to the driving GCMs.A general warming and overall increases in precipitation are projected over the region,with these changes being more pronounced at higher warming levels.The projected warming by ensR shows different spatial patterns,and is in general lower,compared to ensG in most months of the year,while the percentage increases of precipitation are maximum during the cold months.The future changes in K-T climate zones are characterized by a substantial expansion of Dc(temperature oceanic)and retreat of Ec(sub-arctic continental)over the region,reaching∼20%under the 4℃warming level.The most notable change in climate types in ensR is found over Japan(∼60%),followed by Southern Siberia,Mongolia,and the Korean Peninsula(∼40%).The largest change in the K-T climate types is found when increasing from 2 to 3℃.The results will help to better assess the impacts of climate change and in implementation of appropriate adaptation measures over the region.展开更多
This study explores the model performance of the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating precipitation extremes over the mid–high latitudes of Asia,as compared with predecessor models in the...This study explores the model performance of the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating precipitation extremes over the mid–high latitudes of Asia,as compared with predecessor models in the previous phase,CMIP5.Results show that the multimodel ensemble median generally outperforms the individual models in simulating the climate means of precipitation extremes.The CMIP6 models possess a relatively higher capability in this respect than the CMIP5 models.However,discrepancies also exist between models and observation,insofar as most of the simulated indices are positively biased to varying degrees.With respect to the temporal performance of indices,the majority are overestimated at most time points,along with large uncertainty.Therefore,the capacity to simulate the interannual variability needs to be further improved.Furthermore,pairwise and multimodel ensemble comparisons were performed for 12 models to evaluate the performance of individual models,revealing that most of the new-version models are better than their predecessors,albeit with some variance in the metrics amongst models and indices.展开更多
Impacts of the MJO on winter rainfall and circulation in China are investigated using a real-time multivariate MJO index.Composite results using the daily rainfall anomalies and "rainy day" anomalies accordi...Impacts of the MJO on winter rainfall and circulation in China are investigated using a real-time multivariate MJO index.Composite results using the daily rainfall anomalies and "rainy day" anomalies according to eight different MJO phases show that the MJO has considerable influence on winter rainfall in China. Rainfall anomalies show systematic and substantial changes(enhanced/suppressed) in the Yangtze River Basin and South China with the eastward propagation of the MJO convective center from the Indian Ocean to the western Pacific.When the MJO is in phase 2 and 3(MJO convective center is located over the Indian Ocean),rainfall probability is significantly enhanced.While in phase 6 and 7(MJO convective center is over the western Pacific),rainfall probability is significantly reduced. MJO in winter influences the rainfall in China mainly through modulating the circulation in the subtropics and mid-high latitudes.For the subtropics,MJO influences the northward moisture transport coming from the Bay of Bengal and the South China Sea by modulating the southern trough of the Bay of Bengal and the western Pacific subtropical high.For the mid-high latitudes,the propagation of the low frequency perturbations associated with the eastward-propagating MJO convection modulate the circulation in the mid-high latitudes,e.g.the East Asian winter monsoon and the low trough over central Asia.展开更多
Following Wu and Chen(1989), in terms of the elliptical differential equation with mean meridional stream function, an equation similar in form to that developed by Kuo (1956) and by use of time average statistics of ...Following Wu and Chen(1989), in terms of the elliptical differential equation with mean meridional stream function, an equation similar in form to that developed by Kuo (1956) and by use of time average statistics of atmospheric circulation in wavenumber domains at the same intervals of time, a study is made of the con- tribution of the internal forcing of the atmosphere in two space scales to mean meridional circulation. Re- sults show that planetary waves have considerable influence on the intensity of the upper center of the bi- Hadley cell, and, in contrast, synoptic-scale waves exert vital effect on the Ferrel cell, and that in the Northern Hamisphere(NH)such internal forcings by planetary- and synoptic-scale waves are comparable on mean merid- ional circulations whereas the latter contribute far more than the former in the Southern Hemisphere (SH). Further, in the northern winter (summer)the contribution of heat (angular momentum) transport of planetary waves allows the descending (ascending) branch to occur as far as around 40°N, some kind of effect that makes quite important contribution to the winter (summer) monsoon circulation in eastern Asia.展开更多
NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the ...NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation (ISO; 30-60 days) in the mid-high latitude meridional circulation of the upper troposphere over East Asia. The abrupt transition from drought to flood occurs in early June. The first two recovered fields of the complex empirical orthogonal function show that northward-propagating westerlies from low latitudes converge with southward-propagating westerlies from high latitudes over the mid-low reaches of the Yangtze River (MLRYR) in mid late May. The timing of this convergence corresponds to the flood period in early-mid June. The ISO index is significantly and positively correlated with rainfall over the MLRYR. During the dry phase (before the transition), the upper troposphere over the MLRYR is characterized by cyclonic flow, easterly winds, and convergence. The regional circulation is dominated by a wave train with a cyclone over east of Lake Baikal, an anticyclone over northern China, and a cyclone over the MLRYR. During the wet phase, the situation is reversed. The configuration of the wave train during the dry phase favors the southward propagation of westerly wind disturbances, while the configuration of the wave train during the wet phase favors the development and maintenance of a pumping effect and sustained ascending motions over the MLRYR.展开更多
利用NCEP再分析资料和NOAA海表温度等资料,分析了东亚冬季风在不同纬度上的表现。根据我们定义的东亚中纬度冬季风(The mid latitudinal East Asian winter monsoon,简称EAWM-M)和低纬度冬季风(The low latitudinal East Asianwinter mo...利用NCEP再分析资料和NOAA海表温度等资料,分析了东亚冬季风在不同纬度上的表现。根据我们定义的东亚中纬度冬季风(The mid latitudinal East Asian winter monsoon,简称EAWM-M)和低纬度冬季风(The low latitudinal East Asianwinter monsoon,简称EAWM-L)指数,探讨了它们对应的影响系统,并重点分析了它们与海温异常之间联系的异同。研究主要发现:(1)EAWM-L和EAWM-M指数所反映的东亚冬季大气环流形势不尽相同。在对流层低层,EAWM-L与中国南海、菲律宾附近环流异常的关系密切,EAWM-M与贝加尔湖阻塞高压的关系更为密切;在对流层中层,EAWM-M同样与贝加尔湖阻塞高压异常的联系相对更为紧密,而EAWM-L指数则与东亚大槽的关系更为紧密。在对流层高层,副热带西风急流强度变化通过调制次级环流进而与EAWM-L联系起来,而EAWM-M强弱变化主要与副热带西风急流北界的位置有关。(2)EAWM-L与冬季赤道中东太平洋和热带印度洋海温异常的联系都很紧密,而EAWM-M变化与冬季热带印度洋海温异常的联系更为密切,与赤道中东太平洋海温异常的关系相对偏弱。EAWM-L与冬季赤道中东太平洋和热带印度洋海温异常的紧密联系在年际和年代际尺度上都是存在的,而EAWM-M与冬季热带印度洋海温异常的紧密联系主要体现在年代际尺度上。展开更多
基金Innovation Team Project by Institute of Plateau Meteorology,China Meteorological Administration,Chengdu(BROP202043)National Natural Science Foundation of China(41775084)Key Special Projects of National Key R&D Program of China(2018YFC1505706)。
文摘The atmospheric circulation over the mid-high latitudes in Asia has an important influence on regional climate,yet its long-term variation has not been fully explored.The main task of this study is to reveal the interdecadal variation features of summer atmospheric circulation over Asian mid-high latitudes in recent decades.The results show that the atmospheric circulation over mid-high latitudes of Asia has stronger interdecadal fluctuations than that over low latitudes and one significant change center appears near Lake Baikal.It is found that the atmospheric circulation near Lake Baikal has a significant interdecadal change around 1996 and a deep anomalous anticyclonic circulation has been controlling this region since then,which contributes to the significant increase in the surface temperature near Lake Baikal since 1997 and makes the region a remarkable warming center in Asia in recent 40 years.During 1997-2015,the pattern of less precipitation in the north and more precipitation in the south of east China is closely related to the anomalous anticyclonic circulation near Lake Baikal.Especially,this anomalous circulation near Lake Baikal has been found to contribute to the obvious interdecadal decrease of the precipitation in northeast China and north China near1997.The sea surface temperature(SST)of northwestern Atlantic is an important influence factor to the interdecadal change in the atmospheric circulation near Lake Baikal around 1996.
基金supported by the National Natural Science Foundation of China [grant numbers41605027,41805064,91537103,and 41876020]
文摘This study investigated the contributions of mid–high-latitude circulation anomalies to the extremely hot summer(July and August;JA)of 2018 over Northeast Asia(NEA).The JA-mean surface air temperature in 2018 was 1.2°C higher than that of the 1979–2018 climatology,with the amplitude of such an anomaly almost doubling the interannual standard deviation,making 2018 the hottest year during the analysis period 1979–2018.The abnormal warming over NEA was caused by a local positive geopotential height anomaly reaching strongest intensity in JA 2018.Further investigation suggested that the upper-tropospheric circulation anomalies over northern Europe and the Caspian Sea were crucial to forming this NEA circulation anomaly through initiating downstream wave trains.Particularly,the geopotential heights over these two regions were concurrently at their highest in JA 2018,and therefore jointly contributed to the profound circulation anomaly over NEA and the hottest summer on record.Due to these two teleconnection patterns,the temperature anomalies in NEA are closely related to those in both northern Europe and the Caspian Sea,where the similarly extreme warming also happened in 2018.
基金supported by the National Natural Science Foundation of China(41790474)the State Oceanic Administration International Cooperation Program on Global Change and Air–Sea Interactions(GASI-IPOVAI-03)
文摘This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.
基金This research was jointly supported by the National Natural Science Foundation of China(41991284)the Science and Technology Project of Education Department of Jiangxi province(GJJ2201249).
文摘Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess future changes in surface air temperature,precipitation and Köppen-Trewartha(K-T)climate types in Northern Asia under the 1.5-4℃global warming targets.RegCM4 is driven by five CMIP5 global models over an East Asia domain at a grid spacing of 25 km.Validation of the present day(1986-2005)simulations shows that the ensembles of RegCM4(ensR)and driving GCMs(ensG)reproduce the major characters of the observed temperature,precipitation and K-T climate zones reasonably well.Greater and more realistic spatial detail is found in RegCM4 compared to the driving GCMs.A general warming and overall increases in precipitation are projected over the region,with these changes being more pronounced at higher warming levels.The projected warming by ensR shows different spatial patterns,and is in general lower,compared to ensG in most months of the year,while the percentage increases of precipitation are maximum during the cold months.The future changes in K-T climate zones are characterized by a substantial expansion of Dc(temperature oceanic)and retreat of Ec(sub-arctic continental)over the region,reaching∼20%under the 4℃warming level.The most notable change in climate types in ensR is found over Japan(∼60%),followed by Southern Siberia,Mongolia,and the Korean Peninsula(∼40%).The largest change in the K-T climate types is found when increasing from 2 to 3℃.The results will help to better assess the impacts of climate change and in implementation of appropriate adaptation measures over the region.
基金jointly supported by the National Natural Science Foundation of China grant numbers 41991284 and41922034the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA23090102the National Key Research and Development Program of China grant number 2016YFA0602401。
文摘This study explores the model performance of the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating precipitation extremes over the mid–high latitudes of Asia,as compared with predecessor models in the previous phase,CMIP5.Results show that the multimodel ensemble median generally outperforms the individual models in simulating the climate means of precipitation extremes.The CMIP6 models possess a relatively higher capability in this respect than the CMIP5 models.However,discrepancies also exist between models and observation,insofar as most of the simulated indices are positively biased to varying degrees.With respect to the temporal performance of indices,the majority are overestimated at most time points,along with large uncertainty.Therefore,the capacity to simulate the interannual variability needs to be further improved.Furthermore,pairwise and multimodel ensemble comparisons were performed for 12 models to evaluate the performance of individual models,revealing that most of the new-version models are better than their predecessors,albeit with some variance in the metrics amongst models and indices.
基金supported by the National Natural Science Foundation of China (40905035)the National Basic Research Program of China (973 Program,Grant No.2010CB428606)+2 种基金the National Department Public Benefit Research Foundation of China(GYHY200806004)the Science Foundation of China(U0833602)the Key Technologies R&D Program of China under Grant Nos.2009BAC51B00 and 2007BAC29B04.
文摘Impacts of the MJO on winter rainfall and circulation in China are investigated using a real-time multivariate MJO index.Composite results using the daily rainfall anomalies and "rainy day" anomalies according to eight different MJO phases show that the MJO has considerable influence on winter rainfall in China. Rainfall anomalies show systematic and substantial changes(enhanced/suppressed) in the Yangtze River Basin and South China with the eastward propagation of the MJO convective center from the Indian Ocean to the western Pacific.When the MJO is in phase 2 and 3(MJO convective center is located over the Indian Ocean),rainfall probability is significantly enhanced.While in phase 6 and 7(MJO convective center is over the western Pacific),rainfall probability is significantly reduced. MJO in winter influences the rainfall in China mainly through modulating the circulation in the subtropics and mid-high latitudes.For the subtropics,MJO influences the northward moisture transport coming from the Bay of Bengal and the South China Sea by modulating the southern trough of the Bay of Bengal and the western Pacific subtropical high.For the mid-high latitudes,the propagation of the low frequency perturbations associated with the eastward-propagating MJO convection modulate the circulation in the mid-high latitudes,e.g.the East Asian winter monsoon and the low trough over central Asia.
基金The study is supported partially by National Natural Science Foundation of Chinapartially by the State Meteorological Administration Monsoon Research Funds.
文摘Following Wu and Chen(1989), in terms of the elliptical differential equation with mean meridional stream function, an equation similar in form to that developed by Kuo (1956) and by use of time average statistics of atmospheric circulation in wavenumber domains at the same intervals of time, a study is made of the con- tribution of the internal forcing of the atmosphere in two space scales to mean meridional circulation. Re- sults show that planetary waves have considerable influence on the intensity of the upper center of the bi- Hadley cell, and, in contrast, synoptic-scale waves exert vital effect on the Ferrel cell, and that in the Northern Hamisphere(NH)such internal forcings by planetary- and synoptic-scale waves are comparable on mean merid- ional circulations whereas the latter contribute far more than the former in the Southern Hemisphere (SH). Further, in the northern winter (summer)the contribution of heat (angular momentum) transport of planetary waves allows the descending (ascending) branch to occur as far as around 40°N, some kind of effect that makes quite important contribution to the winter (summer) monsoon circulation in eastern Asia.
基金Supported by the National Natural Science Foundation of China (41221064 and 40875052)China Meteorological Administration Special Public Welfare Research Fund (GYHY200906017 and GYHY201006020)Basic Research Fund of the Chinese Academy of Meteorological Sciences (2010Z003)
文摘NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation (ISO; 30-60 days) in the mid-high latitude meridional circulation of the upper troposphere over East Asia. The abrupt transition from drought to flood occurs in early June. The first two recovered fields of the complex empirical orthogonal function show that northward-propagating westerlies from low latitudes converge with southward-propagating westerlies from high latitudes over the mid-low reaches of the Yangtze River (MLRYR) in mid late May. The timing of this convergence corresponds to the flood period in early-mid June. The ISO index is significantly and positively correlated with rainfall over the MLRYR. During the dry phase (before the transition), the upper troposphere over the MLRYR is characterized by cyclonic flow, easterly winds, and convergence. The regional circulation is dominated by a wave train with a cyclone over east of Lake Baikal, an anticyclone over northern China, and a cyclone over the MLRYR. During the wet phase, the situation is reversed. The configuration of the wave train during the dry phase favors the southward propagation of westerly wind disturbances, while the configuration of the wave train during the wet phase favors the development and maintenance of a pumping effect and sustained ascending motions over the MLRYR.
文摘利用NCEP再分析资料和NOAA海表温度等资料,分析了东亚冬季风在不同纬度上的表现。根据我们定义的东亚中纬度冬季风(The mid latitudinal East Asian winter monsoon,简称EAWM-M)和低纬度冬季风(The low latitudinal East Asianwinter monsoon,简称EAWM-L)指数,探讨了它们对应的影响系统,并重点分析了它们与海温异常之间联系的异同。研究主要发现:(1)EAWM-L和EAWM-M指数所反映的东亚冬季大气环流形势不尽相同。在对流层低层,EAWM-L与中国南海、菲律宾附近环流异常的关系密切,EAWM-M与贝加尔湖阻塞高压的关系更为密切;在对流层中层,EAWM-M同样与贝加尔湖阻塞高压异常的联系相对更为紧密,而EAWM-L指数则与东亚大槽的关系更为紧密。在对流层高层,副热带西风急流强度变化通过调制次级环流进而与EAWM-L联系起来,而EAWM-M强弱变化主要与副热带西风急流北界的位置有关。(2)EAWM-L与冬季赤道中东太平洋和热带印度洋海温异常的联系都很紧密,而EAWM-M变化与冬季热带印度洋海温异常的联系更为密切,与赤道中东太平洋海温异常的关系相对偏弱。EAWM-L与冬季赤道中东太平洋和热带印度洋海温异常的紧密联系在年际和年代际尺度上都是存在的,而EAWM-M与冬季热带印度洋海温异常的紧密联系主要体现在年代际尺度上。