Stress calculation formulae for a ring have been obtained by using Airy stress function of the plane strain field with the decomposition of the solutions for normal stresses of Airy biharmonic equation into two parts ...Stress calculation formulae for a ring have been obtained by using Airy stress function of the plane strain field with the decomposition of the solutions for normal stresses of Airy biharmonic equation into two parts when it is loaded under two opposite inside forces along a diameter. One part should fulfill a constraint condition about normal stress distribution along the circumference at an energy valley to do the minimum work. Other part is a stress residue constant. In order to verify these formulae and the computed results, the computed contour lines of equi-maximal shear stresses were plotted and quite compared with that of photo-elasticity test results. This constraint condition about normal stress distribution along circumference is confirmed by using Greens’ theorem. An additional compression exists along the circumference of the loaded ring, explaining the divorcement and displacement of singularity points at inner and outer boundaries.展开更多
文摘Stress calculation formulae for a ring have been obtained by using Airy stress function of the plane strain field with the decomposition of the solutions for normal stresses of Airy biharmonic equation into two parts when it is loaded under two opposite inside forces along a diameter. One part should fulfill a constraint condition about normal stress distribution along the circumference at an energy valley to do the minimum work. Other part is a stress residue constant. In order to verify these formulae and the computed results, the computed contour lines of equi-maximal shear stresses were plotted and quite compared with that of photo-elasticity test results. This constraint condition about normal stress distribution along circumference is confirmed by using Greens’ theorem. An additional compression exists along the circumference of the loaded ring, explaining the divorcement and displacement of singularity points at inner and outer boundaries.