Convective heat transfer characteristics of molten salt in receiver tube under axially and circumferentially non-uniform(ACN)heat flux were experimentally investigated under Reynolds number of 16000 to 58000 and Prand...Convective heat transfer characteristics of molten salt in receiver tube under axially and circumferentially non-uniform(ACN)heat flux were experimentally investigated under Reynolds number of 16000 to 58000 and Prandtl number of 4.6 to 7.5.The results showed that flow rate,flow direction and non-uniform heat flux directly affected molten salt transfer.As coating thickness and flow velocity increased,the difference of outer wall temperature in coating side and molten salt temperature dropped.The average Nusselt number in entrance section was larger than that in middle and end sections for higher Prandtl number.The axial wall temperature difference in coating side with counter-flow heating was lower than that with parallel-flow heating,and receiver tube with counter-flow heating will cause smaller axial thermal stress.From experiment measurement and Sieder-Tate correlation,heat transfer correlation of molten salt in tube under ACN heat flux was obtained by using circumferential heat flux ratio and axial heat flux ratio,and it fit with experimental data with maximum deviation of 5%.展开更多
In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct pow...In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting.展开更多
The present article aims to investigate the Graetz-Nusselt problem for blood as a non-Newtonian fluid obeying the power-law constitutive equation and flowing inside the axisymmetric tube subjected to nonuniform surfac...The present article aims to investigate the Graetz-Nusselt problem for blood as a non-Newtonian fluid obeying the power-law constitutive equation and flowing inside the axisymmetric tube subjected to nonuniform surface heat flux.After the flow field is determined by solving the continuity and the momentum equations,the energy equation is handled by employing the separation of variables method.The resulting Eigen functions and Eigen values are numerically calculated using MATLAB built-in solver BVP4C.The analysis is first conducted for the situation of constant heat flux and subsequently generalized to apply to the case of sinusoidal variation of wall heat flux along the tube length,using Duhamel’s Theorem.Furthermore,an approximate analytic solution is determined,employing an integral approach to solve the boundary layer equations.With respect to the comparison,the results of approximate solution display acceptable congruence with those of exact solution with an average error of 7.4%.Interestingly,with decreasing the power-law index,the discrepancy between the two presented methods significantly reduces.Eventually,the influences of the controlling parameters such as surface heat flux and power-law index on the non-Newtonian fluid flow’s thermal characteristics and structure are elaborately discussed.It is found that switching from constant wall heat flux to non-uniform wall heat flux that sinusoidally varies along the tube length significantly improves the simulation’s accuracy due to the better characterization of the heat transport phenomenon in non-Newtonian fluid flow through the tube.In the presence of sinusoidally varying wall heat flux with an amplitude of 200 W/m 2 and when the power-law index is 0.25,the maximum arterial wall temperature is found to be about 311.56 K.展开更多
In this paper,a numerical model was built by ANSYS FLUENT to investigate the heat transfer performances of supercritical water in a circumferential non-uniformly heated vertical tube.The Shear Stress Transport(SST)k-...In this paper,a numerical model was built by ANSYS FLUENT to investigate the heat transfer performances of supercritical water in a circumferential non-uniformly heated vertical tube.The Shear Stress Transport(SST)k-ωmodel was adopted for describing turbulence.The operating parameters are chosen according to a 660 MW ultra-supercritical CFB boiler.The heat transfer performances under different operating parameters,such as boiler load,flow direction and heat flux distribution are analyzed.The temperature and heat flux on inner wall varies along the circumference and show symmetric distributions.The overall heat transfer performances at each cross section are better than the local heat transfer performance of midpoint of heating side.Flow direction has a great influence on heat transfer performance;it changes the radial distribution of axial velocity and then affects the turbulence distribution.Therefore,upward flow condition shows a better heat transfer performance.Smaller heat flux improves both the overall and local heat transfer performances.Reducing the heat flux area is not conducive to the overall heat transfer,but does not affect the local heat transfer at the midpoint of heating side.Finally,a new correlation is fitted based on the simulated results of supercritical water heat transfer with circumferential non-uniform heat flux distributions.展开更多
High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat di...High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.展开更多
In this study, experiments have been performed for an investigation on heat transfer of water in an inclined downward tube with an inner diameter of 20 mm and an inclined angle of 45° from the horizon, with the r...In this study, experiments have been performed for an investigation on heat transfer of water in an inclined downward tube with an inner diameter of 20 mm and an inclined angle of 45° from the horizon, with the range of pressure from 11.5 to 28 MPa, mass flux from 450 to 1550 kg/(m2 s), and heat flux from 50 to 585 k W/m2. Based on the experimental data, the temperature distribution in the tube wall was derived. The heat transfer characteristics of inclined downward flow were compared with that of vertical downward flow. The effects of heat flux on wall temperature were analyzed and the corresponding empirical correlations were presented. The results show that heat transfer characteristics of water in the inclined downward tube are not uniform along the circumference from the top surface to the bottom surface. An increase in heat flux exacerbates the non-uniformity. At subcritical pressures, both dry-out and departure from nucleate boiling(DNB) occur at the top surface of the inclined downward tube; inversely, only dry-out takes place on the bottom surface of the inclined downward tube and in the vertical downward tube. At near-critical pressures, DNB and dry-out occur in the comparing tubes with greater possibility. At supercritical pressures, heat transfer gets enhanced in the pseudo-critical enthalpy region; in the high enthalpy region, the top surface temperature of the inclined downward tube decreases obviously.展开更多
基金supported by National Natural Science Foundation of China(No.51606227,U1601215)Natural Science Foundation of Guangdong Province(2017B030308004)。
文摘Convective heat transfer characteristics of molten salt in receiver tube under axially and circumferentially non-uniform(ACN)heat flux were experimentally investigated under Reynolds number of 16000 to 58000 and Prandtl number of 4.6 to 7.5.The results showed that flow rate,flow direction and non-uniform heat flux directly affected molten salt transfer.As coating thickness and flow velocity increased,the difference of outer wall temperature in coating side and molten salt temperature dropped.The average Nusselt number in entrance section was larger than that in middle and end sections for higher Prandtl number.The axial wall temperature difference in coating side with counter-flow heating was lower than that with parallel-flow heating,and receiver tube with counter-flow heating will cause smaller axial thermal stress.From experiment measurement and Sieder-Tate correlation,heat transfer correlation of molten salt in tube under ACN heat flux was obtained by using circumferential heat flux ratio and axial heat flux ratio,and it fit with experimental data with maximum deviation of 5%.
基金the National Board for Higher Mathematics(NBHM),DAE,Mumbai,India
文摘In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting.
文摘The present article aims to investigate the Graetz-Nusselt problem for blood as a non-Newtonian fluid obeying the power-law constitutive equation and flowing inside the axisymmetric tube subjected to nonuniform surface heat flux.After the flow field is determined by solving the continuity and the momentum equations,the energy equation is handled by employing the separation of variables method.The resulting Eigen functions and Eigen values are numerically calculated using MATLAB built-in solver BVP4C.The analysis is first conducted for the situation of constant heat flux and subsequently generalized to apply to the case of sinusoidal variation of wall heat flux along the tube length,using Duhamel’s Theorem.Furthermore,an approximate analytic solution is determined,employing an integral approach to solve the boundary layer equations.With respect to the comparison,the results of approximate solution display acceptable congruence with those of exact solution with an average error of 7.4%.Interestingly,with decreasing the power-law index,the discrepancy between the two presented methods significantly reduces.Eventually,the influences of the controlling parameters such as surface heat flux and power-law index on the non-Newtonian fluid flow’s thermal characteristics and structure are elaborately discussed.It is found that switching from constant wall heat flux to non-uniform wall heat flux that sinusoidally varies along the tube length significantly improves the simulation’s accuracy due to the better characterization of the heat transport phenomenon in non-Newtonian fluid flow through the tube.In the presence of sinusoidally varying wall heat flux with an amplitude of 200 W/m 2 and when the power-law index is 0.25,the maximum arterial wall temperature is found to be about 311.56 K.
基金financially supported by the National Key Research&Development Program of China(2022YFB4100303)。
文摘In this paper,a numerical model was built by ANSYS FLUENT to investigate the heat transfer performances of supercritical water in a circumferential non-uniformly heated vertical tube.The Shear Stress Transport(SST)k-ωmodel was adopted for describing turbulence.The operating parameters are chosen according to a 660 MW ultra-supercritical CFB boiler.The heat transfer performances under different operating parameters,such as boiler load,flow direction and heat flux distribution are analyzed.The temperature and heat flux on inner wall varies along the circumference and show symmetric distributions.The overall heat transfer performances at each cross section are better than the local heat transfer performance of midpoint of heating side.Flow direction has a great influence on heat transfer performance;it changes the radial distribution of axial velocity and then affects the turbulence distribution.Therefore,upward flow condition shows a better heat transfer performance.Smaller heat flux improves both the overall and local heat transfer performances.Reducing the heat flux area is not conducive to the overall heat transfer,but does not affect the local heat transfer at the midpoint of heating side.Finally,a new correlation is fitted based on the simulated results of supercritical water heat transfer with circumferential non-uniform heat flux distributions.
基金supported by the National Natural Science Foundation of China(Grant No.52106112,52007153)Natural Science Basic Research Plan of Shaanxi Province in China(Program No.2022JM-185)。
文摘High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.
基金supported by the "Strategic Priority Research Program" Demonstration of Key Technologies for Clean and Efficient Utilization of Low-rank Coal (Grant No. XDA07030100)
文摘In this study, experiments have been performed for an investigation on heat transfer of water in an inclined downward tube with an inner diameter of 20 mm and an inclined angle of 45° from the horizon, with the range of pressure from 11.5 to 28 MPa, mass flux from 450 to 1550 kg/(m2 s), and heat flux from 50 to 585 k W/m2. Based on the experimental data, the temperature distribution in the tube wall was derived. The heat transfer characteristics of inclined downward flow were compared with that of vertical downward flow. The effects of heat flux on wall temperature were analyzed and the corresponding empirical correlations were presented. The results show that heat transfer characteristics of water in the inclined downward tube are not uniform along the circumference from the top surface to the bottom surface. An increase in heat flux exacerbates the non-uniformity. At subcritical pressures, both dry-out and departure from nucleate boiling(DNB) occur at the top surface of the inclined downward tube; inversely, only dry-out takes place on the bottom surface of the inclined downward tube and in the vertical downward tube. At near-critical pressures, DNB and dry-out occur in the comparing tubes with greater possibility. At supercritical pressures, heat transfer gets enhanced in the pseudo-critical enthalpy region; in the high enthalpy region, the top surface temperature of the inclined downward tube decreases obviously.