Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell ...Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).展开更多
The frequent cases of dengue incidences are leading cause of illness and death in urban areas and Aedes albopictus (Skuse) is a primary vector for Dengue transmission in India. Synthesis of leaf mediated silver nanopa...The frequent cases of dengue incidences are leading cause of illness and death in urban areas and Aedes albopictus (Skuse) is a primary vector for Dengue transmission in India. Synthesis of leaf mediated silver nanoparticles especially with Pongamia pinnata is a potential substitute for the existing organophosphorus insecticides like Tenophos, malathion and fenthion etc., for mosquito control programme. The nanoparticles were characterized by UV-visible absorption spectrum, X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Analysis of TEM showed that the synthesized silver nanoparticles are in spherical shape with average size of 20 nm. Further the XRD analysis confirms the nano-crystalline phase of silver with face centred cubic (FCC) crystal structure. GC-MS analysis elucidated the presence of two active ingredients, such as 9-Octadecenoic acid (Z) and n-hexadecanoic acid, which are the prominent substances considered as larvicide. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 hours. From the results, it is found that plant extracts showed moderate larvicidal effects but, the synthesized silver nanoparticles had found to be toxic to larvae at LC50 (0.25 ppm) and LC90 (1 ppm).展开更多
基金This work was supported by the National Natural Science Foundation of China(No.39870661). Phone: (0086-451)-3641309 Fax: (0086-451)-3641253
文摘Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).
文摘The frequent cases of dengue incidences are leading cause of illness and death in urban areas and Aedes albopictus (Skuse) is a primary vector for Dengue transmission in India. Synthesis of leaf mediated silver nanoparticles especially with Pongamia pinnata is a potential substitute for the existing organophosphorus insecticides like Tenophos, malathion and fenthion etc., for mosquito control programme. The nanoparticles were characterized by UV-visible absorption spectrum, X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Analysis of TEM showed that the synthesized silver nanoparticles are in spherical shape with average size of 20 nm. Further the XRD analysis confirms the nano-crystalline phase of silver with face centred cubic (FCC) crystal structure. GC-MS analysis elucidated the presence of two active ingredients, such as 9-Octadecenoic acid (Z) and n-hexadecanoic acid, which are the prominent substances considered as larvicide. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 hours. From the results, it is found that plant extracts showed moderate larvicidal effects but, the synthesized silver nanoparticles had found to be toxic to larvae at LC50 (0.25 ppm) and LC90 (1 ppm).