期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Nanosized Nickel Oxides Derived from the Citrate Gel Process and Performances for Electrochemical Capacitors 被引量:1
1
作者 沈湘黔 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期179-182,共4页
Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ... Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ratios of citric acid (CA) to nickel at different temperatures and times were characterized by thermal analysis (TG/DTA), scanning electron microscopy (SEM), x-ray diffraction (XRD), and measurement of specific surface area (BET) with porosity analyses. The optimized processing conditions of calcination temperature 400℃ for 1 hour with the CA/Ni ratio of 1.2, were determined to produce the nanosized nickel oxide pow- ders with a high specific surface area of 181 m^2/g, nanometer particle sizes of 15-25 nm, micro-pore diameter distribution between 4-10 nm. The capacitance characteristics of the nanosized nickel oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) exhibiting both a double-layer capacitance and a faradaic pseudocapacitance. The nanosized nickel oxide electrode shows a high cyclic stability and is promising for high performance electrochemical capacitors. 展开更多
关键词 citrate gel process nanosized nickel oxide electrode electrochemical capacitors capaci- tance characteristics
下载PDF
Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors
2
作者 dianxin ZHOU Xiangqian SHEN Maoxiang JING 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期803-806,共4页
Nanosized Ni-Mn oxide powders have been successfully citrate gel precursors. The powder materials derived from prepared by thermal decomposition of the Ni-Mn calcination of the gel precursors with various molar ratios... Nanosized Ni-Mn oxide powders have been successfully citrate gel precursors. The powder materials derived from prepared by thermal decomposition of the Ni-Mn calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET). The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m^2/g and nanometer particle sizes of 15-30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors. 展开更多
关键词 citrate gel process Nanosized Ni-Mn oxide electrode Electrochemical capacitor Capacitance characteristics
下载PDF
Nano crystalline powders of NiCu ferrite and NiCuZn ferrite prepared from citrate gel method: Synthesis and cnaracterzation
3
作者 Y. L. N. Murthy I. K Kasi Viswanath +1 位作者 T. Kondala Rao Rajendrasingh 《Journal of Chemistry and Chemical Engineering》 2009年第6期22-26,43,共6页
Nano size nickel copper ferrite powders (NiCuFe204) and nickel copper zinc ferrite powders have been prepared by a citrate gel precursor method. The resulting powders were characterized by X-ray diffraction (XRD) ... Nano size nickel copper ferrite powders (NiCuFe204) and nickel copper zinc ferrite powders have been prepared by a citrate gel precursor method. The resulting powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that nickel copper ferrites and nickel copper zinc ferrites were also in the nanosaele. The NiCu ferrite powders showed extensive XRD fine broadening and sizes of crystals were calculated (from the XRD line broadening) as 26 run-44 run over the temperature range is 200-800℃. The NiCuZn ferrite powders showed XRD line broadening and sizes of of crystals were calculated 46-65 nm over 200-800℃. 展开更多
关键词 NANOSIZE citrate gel method nickel copper ferrite nickel copper zinc ferrite
下载PDF
Low Temperature Preparation of Ceria Solid Solutions Doubly Doped with Rare-Earth and Alkali-Earth and Their Properties as Solid Oxide Fuel Cells 被引量:1
4
作者 任引哲 蒋凯 +2 位作者 王海霞 孟健 苏锵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第4期461-465,共5页
A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite... A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria based solid electrolyte is improved. The effects of rare earth and alkali earth ions on the electricity were discussed. The open circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce 0.8 Sm 0.2 ) 1-0.05 Ca 0.05 O 2- δ as electrolyte are 0.86 V and 33 mW·cm -2 , respectively. 展开更多
关键词 CERIA solid electrolyte amorphous citrate gel method impedance spectra solid oxide fuel cell rare earths
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部