期刊文献+
共找到58,406篇文章
< 1 2 250 >
每页显示 20 50 100
Assessing Dietary Consumption of Sodium and Potassium in China through Wastewater Analysis
1
作者 TAN Dong Qin LIANG Yi +3 位作者 GUO Ting LI Yan Ying SONG Yong Xin WANG De Gao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第1期127-131,共5页
A causal relationship has been reported between the average population salt(sodium chloride)intake and the increased risk of stroke and cardiovascular and cerebrovascular diseases in some epidemiological and clinical ... A causal relationship has been reported between the average population salt(sodium chloride)intake and the increased risk of stroke and cardiovascular and cerebrovascular diseases in some epidemiological and clinical studies.The World Health Organization has recommended that a sodium intake of<2 g/day is preventive against cardiovascular disease,although the current intake is in excess in most countries. 展开更多
关键词 wastewater INTAKE POTASSIUM
下载PDF
Development of Localized Assessment of Municipal Wastewater Disposal Risks
2
作者 Frederick Bloetscher Daniel E. Meeroff Brittanney Adelmann 《Journal of Water Resource and Protection》 CAS 2024年第6期395-413,共19页
A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct ... A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based. 展开更多
关键词 Potable Reuse wastewater Effluent Disposal Risk Risk Assessment
下载PDF
Characterization of Wastewater in School Environments for an Ecological Treatment Solution: A Case Study of Ndiebene Gandiol 1 School
3
作者 Falilou Coundoul Abdou Khafor Ndiaye Abdoulaye Deme 《Journal of Water Resource and Protection》 CAS 2024年第1期27-40,共14页
The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical O... The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and fecal coliforms, signaling potential risks to the well-being of students and staff. This situation mirrors a wider issue in rural educational settings, where inadequate sanitation persists. Intensive wastewater treatment options are known for their effectiveness against high pollutant loads but are resource-intensive in both energy and cost. Conversely, extensive treatment systems, while requiring more land, provide a sustainable alternative by harnessing natural processes for pollutant removal. The research suggests a hybrid treatment approach could serve the school’s needs, balancing the robust capabilities of intensive methods with the ecological benefits of extensive systems. Such a solution would need to be tailored to the specific environmental, financial, and logistical context of the school, based on comprehensive feasibility studies and stakeholder engagement. This study’s findings underscore the urgency of addressing sanitation in schools, as it is intrinsically linked to the health and academic success of students. Quick, effective, and long-term strategies are vital to secure a healthier and more prosperous future for the youth. With proper implementation, the school can transform its sanitation facilities, setting a precedent for rural educational institutions in Senegal and similar contexts globally. 展开更多
关键词 wastewater Characterization Ecological Treatment School Sanitation PHYTOREMEDIATION Rural Infrastructure Environmental Health
下载PDF
Ecological Wastewater Treatment System in a School Environment Using a Horizontal Flow Biological Reactor: The Case of Typha
4
作者 Falilou Coundoul Abdou Khafor Ndiaye Abdoulaye Deme 《Journal of Environmental Protection》 2024年第1期1-12,共12页
The overarching goal of this study is to offer an effective and sustainable solution to the challenges of sanitation in rural and school settings in the northern region of Senegal. The study explores a wastewater trea... The overarching goal of this study is to offer an effective and sustainable solution to the challenges of sanitation in rural and school settings in the northern region of Senegal. The study explores a wastewater treatment approach based on phytoremediation, with a particular focus on the use of horizontally-flowing reed bed filters. Furthermore, it aims to adapt and optimize these systems for the specific needs of Senegal, focusing on wastewater in school environments. Thus, we constructed a horizontally-flowing reed bed filter, planted with Typha, at the Ndiébène Gandiol school in Senegal. We will investigate the efficiency of wastewater treatment by this horizontally-flowing reed bed filter, emphasizing the role of the plant used: Typha. The filter is described in detail, specifying its dimensions, its composition of flint gravel, and the choice of plants, namely Typha. The experimental protocol is detailed, describing the sampling at the entrance and exit of the filter to evaluate water quality. The parameters analyzed include Chemical Oxygen Demand (COD), Biochemical Oxygen Demand over 5 days (BOD5), suspended solids, ammonium, nitrates, phosphates, pH, conductivity, and fecal coliforms. The results indicate a significant improvement in water quality after treatment. COD, BOD5, suspended solids, and fecal coliforms are greatly reduced, thus demonstrating the efficacy of the Typha filter. However, nitrate concentrations remain relatively stable, suggesting room for improvement in their elimination. A perspective of reuse of the treated water is considered, showing that the effluents from the planted filter meet Senegalese and international standards for irrigation. The findings suggest that these waters could be used for a variety of crops, thereby reducing the pressure on freshwater resources. In conclusion, the Typha-based filtration system shows promising results for improving water quality in this region of Senegal. However, adjustments are necessary for more effective nitrate removal. This study paves the way for sustainable use of treated wastewater for irrigation, thus contributing to food security and the preservation of water resources. 展开更多
关键词 Hydraulic Engineering wastewater Quality wastewater Treatment Agricultural Irrigation SANITATION ENGINEERING Environment
下载PDF
Ecological Wastewater Treatment System Using a Horizontal Flow Biological Reactor: The Case of Vetiver
5
作者 Falilou Coundoul Abdou Khafor Ndiaye Abdoulaye Deme 《Journal of Environmental Protection》 2024年第1期26-38,共13页
Confronted with the challenge of wastewater management, particularly in the school environment of Senegal, our study set out to achieve multiple objectives. Following field surveys, laboratory analyses of wastewater s... Confronted with the challenge of wastewater management, particularly in the school environment of Senegal, our study set out to achieve multiple objectives. Following field surveys, laboratory analyses of wastewater samples were carried out, revealing a significant pollutant load. In the community of Gandiol, near Saint-Louis (Senegal), the school of Ndiebene Gandiol 1 faces significant sanitation challenges. Our study aimed to address this issue by using a constructed filter composed of two filtering bed cells measuring 12 × 8.5 m, preceded by a septic tank. We particularly focused on the influence of Vetiver;a plant chosen for its purification potential. Our analyses showed remarkable efficiency of the filter. Elimination rates reached 95% for 5-Day Biochemical Oxygen Demand (BOD5), 91% for Chemical Oxygen Demand (COD), and 92% for SS, far exceeding the Senegalese standards set at 50 mg/L, 200 mg/L, and 40 mg/L, respectively. Furthermore, the concentration of fecal coliforms was reduced to 176 FCU/100mL, well below the Senegalese threshold of 2000 FCU/100mL and close to the World Health Organization’s (WHO) recommendation of 1000 FCU/100mL. However, despite these promising results, some parameters, particularly the concentration of certain pollutants, approached the thresholds defined by European legislation. For example, for Suspended Solids (SS), the post-treatment level of 3 mg/L was well below the Senegalese standard but edged close to the European minimum of 10 mg/L. In conclusion, the Vetiver filter demonstrated a remarkable ability to treat school wastewater, offering high pollutant elimination percentages. These results suggest significant opportunities for the reuse of treated water, potentially in areas such as irrigation, though some adjustments may be necessary to meet the strictest standards such as those of the European union (EU). 展开更多
关键词 Hydraulic Engineering wastewater Quality wastewater Treatment Agricultural Irrigation SANITATION ENGINEERING ENVIRONMENT
下载PDF
Effectiveness of Wastewater-Based Epidemiology as an Early Warning Tool to Detect SARS-CoV-2 (COVID-19)
6
作者 Rakib Ahmed Chowdhury Daniel E. Meeroff +8 位作者 Sumaiya Sharmin Alamgir Kabir Sara Hollenbeck Valerie Dalencourt Thu Nguyen Zack Farmer Frederick Bloetscher Waseem Asghar Stacey Volnick 《Health》 2024年第7期635-656,共22页
Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease ... Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease incidence due to the cost of providing testing for all people in a community on a routine basis. As an alternative to randomly sampling large groups of people to track disease incidence at significant cost, wastewater-based epidemiology (WBE) is a well-established and cost-effective technique to passively measure the prevalence of disease in communities without requiring invasive testing. WBE can also be used as a forecasting tool since the virus is shed in individuals prior to developing symptoms that might otherwise prompt testing. This study applied the WBE approach to understand its effectiveness as a possible forecasting tool by monitoring the SARS-CoV-2 levels in raw wastewater sampled from sewer lift stations at a large public university campus setting including dormitories, academic buildings, and athletic facilities. The WBE analysis was conducted by sampling from building-specific lift stations and enumerating target viral copies using RT-qPCR analysis. The WBE results were compared with the 7-day rolling averages of confirmed infected individuals for the following week after the wastewater sample analysis. In most cases, changes in the WBE outcomes were followed by similar trends in the clinical data. The positive predictive value of the applied WBE approach was 86% for the following week of the sample collection. In contrast, positive correlations between the two data with Spearmen correlation (rs) ranged from 0.16 to 0.36. A stronger correlation (rs = 0.18 to 0.51) was observed when WBE results were compared with COVID-19 cases identified on the next day of the sampling events. The P value of 0.007 for Dorm A suggests high significance, while moderate significance was observed for the other dormitories (B, C, and D). The outcomes of this investigation demonstrate that WBE can be a valuable tool to track the progression of diseases like COVID-19 seven days before diagnostic cases are confirmed, allowing authorities to take necessary measures in advance and also enable authorities to decide to reopen a facility after a quarantine. 展开更多
关键词 SARS-CoV-2 wastewater Detection wastewater-Based Epidemiology (WBE)
下载PDF
Photocatalytic application of magnesium spinel ferrite in wastewater remediation:A review
7
作者 Rohit Jasrotia Nikhil Jaswal +3 位作者 Jyoti Prakash Chan Choon Kit Jagpreet Singh Abhishek Kandwal 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期490-505,共16页
This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis ... This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater. 展开更多
关键词 Magnesium ferrite wastewater DYES ANTIBIOTICS Photocatalytic degradation
下载PDF
Detection of Adenovirus in Fresh Fruit, Vegetables, Wastewater and Manure from Irrigated Farms in Ouagadougou, Burkina Faso
8
作者 Kuan Abdoulaye Traore Madou Sanou +3 位作者 Jean Bienvenue Ouoba Bruno Lalidia Ouoba Pierre Roques Nicolas Barro 《Food and Nutrition Sciences》 CAS 2024年第7期644-662,共19页
Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural ... Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural practices and the presence of adenovirus (AdV) in fruits and vegetables, manure and irrigation wastewater sampled in the urban and peri-urban perimeters of Ouagadougou. A total of 286 samples including 30 lettuces, 42 tomatoes, 30 carrots, 30 strawberries, 74 manures and 80 wastewater samples were collected from four market garden sites in and around Ouagadougou. Nested PCR was performed with specific primers to detect adenoviruses (AdVs). A face-to-face survey was carried out using a questionnaire on market garden production practices. Overall, adenoviruses prevalence was 5.9% [IC95, 3.2% - 8.7%] in all samples analyzed. It was specifically 7.14% (3/42) from tomatoes, 6.7% (2/30) from lettuces, 20% (6/30) on strawberries and 7.5% (6/80) in irrigation water. The survey showed that irrigation water came from untreated sources (dam, well, canal) and then 52% of farms used untreated manure. No farms have implemented measures to limit access by domestic and wild animals. This work shows the presence of human adenoviruses in surface irrigation water and fresh produce, which is of concern when fresh produce is consumed raw. To reduce the public health risks associated with consuming these foods, it is essential to follow good hygiene and cultivation practices. 展开更多
关键词 ADENOVIRUS Raw Fruits and Vegetables Nested PCR wastewater MANURE OUAGADOUGOU
下载PDF
Mechanism study of Cu(Ⅱ) adsorption from acidic wastewater by ultrasonic-modified municipal solid waste incineration fly ash
9
作者 Shunda lin Yang Lu +3 位作者 Lin Zheng Ling Long Xuguang Jiang Jianhua Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期157-165,共9页
High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(M... High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects. 展开更多
关键词 ULTRASOUND MSWI fly ash Cu(Ⅱ) wastewater ADSORPTION
下载PDF
Efficiency and effectiveness of systems for the treatment of domestic wastewater based on subsurface flow constructed wetlands in Jarabacoa, Dominican Republic
10
作者 Yvelisse Pérez Enmanuel Vargas +3 位作者 Daniel Garcia-Cortes William Hernandez Humberto Checo Ulises Jauregui-Haza 《Water Science and Engineering》 EI CAS CSCD 2024年第2期118-128,共11页
Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jar... Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water. 展开更多
关键词 Domestic wastewater Constructed wetland BOD COD PATHOGENS Heavy metals
下载PDF
Nanoscale Zero-Valent Iron(nZVI)for Heavy Metal Wastewater Treatment:A Perspective
11
作者 Shaolin Li Lei Li Weixian Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第5期16-20,共5页
Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harmi... Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste. 展开更多
关键词 Nanoscale zero-valent iron wastewater Heavy metal Resource recovery
下载PDF
Digital Twins for Wastewater Treatment:A Technical Review
12
作者 Ai-Jie Wang Hewen Li +6 位作者 Zhejun He Yu Tao Hongcheng Wang Min Yang Dragan Savic Glen TDaigger Nanqi Ren 《Engineering》 SCIE EI CAS CSCD 2024年第5期21-35,共15页
The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domai... The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domains,and key technologies.More specifically,we investigate the transformative potential of digital twins for the wastewater treatment engineering sector.Our discussion highlights the application of digital twins to wastewater treatment plants(WWTPs)and sewage networks,hardware(i.e.,facilities and pipes,sensors for water quality and activated sludge,hydrodynamics,and power consumption),and software(i.e.,knowledge-based and data-driven models,mechanistic models,hybrid twins,control methods,and the Internet of Things).Furthermore,two cases are provided,followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs.This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift. 展开更多
关键词 Digital twins Urban water systems wastewater treatment
下载PDF
Textile dyeing wastewater negatively influences the hematological profile and reproductive health of male Swiss albino mice
13
作者 Taimur Islam Nusrat Binte Rafique +7 位作者 Mohosina Mou Dipu Roy Robius Sani Sadi Ziban Chandra Das Anup Kumar Talukder Minhaz Ahmed Mizanur Rahman Golam Haider 《Asian pacific Journal of Reproduction》 CAS 2024年第4期169-177,共9页
Objective:To determine the effects of textile dyeing industrial wastewater on the hematological parameters and reproductive health including histoarchitecture of male gonad(testes)of mice.Methods:Twenty-four Swiss alb... Objective:To determine the effects of textile dyeing industrial wastewater on the hematological parameters and reproductive health including histoarchitecture of male gonad(testes)of mice.Methods:Twenty-four Swiss albino mice at 4-weeks old were divided into four groups(n=6 per group).Mice of group 1 supplied with normal drinking water were served as the control group.Mice of group 2,3 and 4 were supplied normal drinking water mixed with textile dyeing wastewater at 5%,10% and 20% concentration,respectively.After completing 24 weeks of treatment,different hematological profile,weight of testes,gonadosomatic index(GSI),sperm concentration and morphology were measured.Moreover,histopathological changes in testes were examined.Results:Hematocrit value and hemoglobin concentrations were decreased in all groups of wastewater-treated mice compared to the control group.Likewise,weight of testes,GSI and sperm concentration were decreased significantly in wastewater-treated mice in comparison to the control group.The percentage of morphologically healthy epididymal sperm was significantly reduced in wastewater-treated mice.Histopathological examination revealed degenerative changes in seminiferous tubules,a smaller number of spermatogenic cells,elongation of seminiferous tubules and degenerative changes of seminiferous tubules in wastewater-treated mice.Conclusions:Textile dyeing wastewater has harmful effects on hematological profile and reproductive health of male mice. 展开更多
关键词 Textile dyeing wastewater Gonads HEMATOLOGY HISTOPATHOLOGY Mice
下载PDF
Progress and prospects of Mg-based amorphous alloys in azo dye wastewater treatment
14
作者 Yanan Chen Fengchun Chen +5 位作者 Liang Li Chen Su Bo Song Hongju Zhang Shengfeng Guo Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期873-889,共17页
Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem... Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice. 展开更多
关键词 Mg-based amorphous alloys Azo dyes DEALLOYING Surface modification wastewater degradation.
下载PDF
Metagenomic Insight Reveals the Microbial Structure and Function of the Full-Scale Coking Wastewater Treatment System:Gene-Based Nitrogen Removal
15
作者 Jiaying Ma Fan Wang +4 位作者 Haifeng Fan Enchao Li Huaqiang Chu Xuefei Zhou Yalei Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第5期76-89,共14页
Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still ... Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still lacking.A five month survey of four sequential bioreactors,anoxic 1/oxic 1/anoxic 2/oxic 2(A1/O1/A2/O2),was carried out in a full-scale CWW treatment system in China to elucidate operational performance and microbial ecology.The results showed that A1/O1/A2/O2 had excellent and stable performance for nitrogen removal.Both total nitrogen(TN;(17.38±6.89)mgL1)and ammonium-nitrogen(NH4 t-N;(2.10±1.34)mg·L^(-1))in the final biological effluent satisfied the Chinese national standards for CWW.Integrated analysis of 16S ribosome RNA(rRNA)sequencing and metagenomic sequencing showed that the bacterial communities and metagenomic function profiles of A1 and O1 shared similar functional structures,while those of A2 significantly varied from those of other bioreactors(p<0.05).The results indicated that microbial activity was strongly connected with activated sludge function.Nitrosospira,Nitrosomonas,and SM1A02 were responsible for nitrification during the primary anoxic-oxic(AO)stage and Azoarcus and Thauera acted as important denitrifiers in A2.Nitrogen cycling-related enzymes and genes work in the A1/O1/A2/O2 system.Moreover,the hao genes catalyzing hydroxylamine dehydrogenase(EC 1.7.2.6)and the napA and napB genes catalyzing nitrate reductase(EC 1.9.6.1)played important roles in the nitrification and denitrification processes in the primary and secondary AO stages,respectively.The mixed liquor suspended solids(MLSS)/total solids(TS),TN removal rate(RR),total organic carbon(TOC)(RR),and NH_(4)^(+)t-N(RR)were the most important environmental factors for regulating the structure of core bacterial genera and nitrogen-cycling genes.Proteobacteria were the potential main participants in nitrogen metabolism in the A1/O1/A2/O2 system for CWW treatment.This study provides an original and comprehensive understanding of the microbial community and functions at the gene level,which is crucial for the efficient and stable operation of the full-scale biological process for CWW treatment. 展开更多
关键词 Coking wastewater FULL-SCALE Microbial community Metagenomic sequencing Nitrogen-cycling genes Environmental factor
下载PDF
Magnesium oxide(MgO)nanoadsorbents in wastewater treatment:A comprehensive review
16
作者 H.C.S.Perera V.Gurunanthanan +3 位作者 Anoop Singh M.M.M.G.P.G.Mantilaka G.Das Sandeep Arya 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1709-1773,共65页
Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge,necessitating effective and sustainable separation techniques.This review article provides a detailed examinat... Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge,necessitating effective and sustainable separation techniques.This review article provides a detailed examination of magnesium oxide(MgO)nanoparticles as an innovative nanoadsorbent for wastewater treatment,with a specific focus on heavy metal and dye removal.The review comprehensively explores various aspects of MgO nanoparticles,including their structural characteristics and synthesis techniques.The article delves into the morphology and crystallographic arrangement of MgO nanoparticles,offering insights into their structural attributes.Given the complexity of adsorption processes,the review identifies and analyzes parameters influencing the adsorption efficiency of MgO nanoparticles,such as temperature,pH,contact time,initial concentration,and co-existing ions.The interplay between these parameters and the adsorption capability of MgO nanoparticles emphasizes the importance of optimizing operational conditions.Furthermore,the review assesses various synthesis methods for MgO nanoparticles,including sol-gel,hydrothermal,precipitation,green synthesis,solvothermal,and template-assisted techniques.It discusses the advantages,limitations,and resulting nanoparticle characteristics of each method,enabling readers to grasp the implications of synthesis processes on adsorption efficiency.This comprehensive review consolidates current insights into the effectiveness of MgO nanoparticles as a potent nanoadsorbent for removing heavy metals and dyes from wastewater covering a wide spectrum of aspects related to MgO nanoparticles.Moreover,there is a need to investigate the use of MgO in the treatment of actual wastewater or river water,in order to leverage its cost-effectiveness and high efficiency for practical water treatment applications in real-time. 展开更多
关键词 MgO nanoparticles Nanoadsorbent wastewater treatment Heavy metals Dye separation ADSORPTION Synthesis methods
下载PDF
Facile synthesis of composite polyferric magnesium-silicate-sulfate coagulant with enhanced performance in water and wastewater
17
作者 Xiangtao Huo Rongxia Chai +2 位作者 Lizheng Gou Mei Zhang Min Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期574-584,共11页
The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(... The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(SO_(4))_(3),and MgSO_(4) as raw materials in this paper.The effects of aging time,Fe:Si:Mg,and OH:M molar ratios(M represents the metal ions)on the coagulation performance of the as-pre-pared PFMS were systematically investigated to obtain optimum coagulants.The results showed that PFMS coagulant exhibited good co-agulation properties in the treatment of simulated humic acid-kaolin surface water and reactive dye wastewater.When the molar ratio was controlled at Fe:Si:Mg=2:2:1 and OH:M=0.32,the obtained PFMS presented excellent stability and a high coagulation efficiency.The removal efficiency of ultraviolet UV254 was 99.81%,and the residual turbidity of the surface water reached 0.56 NTU at a dosage of 30 mg·L^(-1).After standing the coagulant for 120 d in the laboratory,the removal efficiency of UV254 and residual turbidity of the surface wa-ter were 88.12%and 0.68 NTU,respectively,which accord with the surface water treatment requirements.In addition,the coagulation performance in the treatment of reactive dye wastewater was greatly improved by combining the advantages of magnesium and iron salts.Compared with polyferric silicate-sulfate(PFS)and polymagnesium silicate-sulfate(PMS),the PFMS coagulant played a better decolor-ization role within the pH range of 7-13. 展开更多
关键词 polyferric-magnesium-silicate-sulfate composite coagulants water and wastewater excellent stability high coagulation ef-ficiency DECOLORIZATION
下载PDF
Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment
18
作者 Hamidatu Alhassan Ying Woan Soon +1 位作者 Anwar Usman Voo Nyuk Yoong 《Water Science and Engineering》 EI CAS CSCD 2024年第2期139-149,共11页
Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity ... Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity to simultaneously absorb water and oil,which restricts their range of applications.In this study,a reduced graphene oxide and titanium dioxide nanocomposite(rGO/TiO_(2))was used to fabricate an ultra-hydrophobic melamine sponge(MS)through interfacial modification using a solution immersion technique.To further modify it,poly-dimethylsiloxane(PDMS)was grafted onto its surface to establish stronger covalent bonds with the composite.The water contact angle of the sponge(rGO/TiO_(2)/PDMS/MS)was 164.2°,which satisfies the condition for ultrahydrophobicity.The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect.As a result of the increased density of rGO/TiO_(2)/PDMS/MS,it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption.The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption,while rGO/TiO_(2)/PDMS/MS retained 97%,suggesting good recyclability.Excellent oil and organic solvent recovery(90%-96%)was demonstrated by rGO/TiO_(2)/PDMS/MS in oil-water combinations.In a continuous separation system,it achieved a remarkable separation efficiency of 2.4×10^(6)L/(m^(3)·h),and in turbulent emulsion separation,it achieved a demulsification efficiency of 90%-91%.This study provides a practical substitute for massive oil spill cleaning. 展开更多
关键词 Oily wastewater Reduced graphene oxide Polydimethylsiloxane(PDMS) Emulsion separation Melamine sponge
下载PDF
Multimodal Machine Learning Guides Low Carbon Aeration Strategies in Urban Wastewater Treatment
19
作者 Hong-Cheng Wang Yu-Qi Wang +4 位作者 Xu Wang Wan-Xin Yin Ting-Chao Yu Chen-Hao Xue Ai-Jie Wang 《Engineering》 SCIE EI CAS CSCD 2024年第5期51-62,共12页
The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising sol... The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising solution.Here,we introduce an ML technique based on multimodal strategies,focusing specifically on intelligent aeration control in wastewater treatment plants(WWTPs).The generalization of the multimodal strategy is demonstrated on eight ML models.The results demonstrate that this multimodal strategy significantly enhances model indicators for ML in environmental science and the efficiency of aeration control,exhibiting exceptional performance and interpretability.Integrating random forest with visual models achieves the highest accuracy in forecasting aeration quantity in multimodal models,with a mean absolute percentage error of 4.4%and a coefficient of determination of 0.948.Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs by 19.8%compared to traditional fuzzy control methods.The potential application of these strategies in critical water science domains is discussed.To foster accessibility and promote widespread adoption,the multimodal ML models are freely available on GitHub,thereby eliminating technical barriers and encouraging the application of artificial intelligence in urban wastewater treatment. 展开更多
关键词 wastewater treatment Multimodal machine learning Deep learning Aeration control Interpretable machine learning
下载PDF
Cloud-Model-Based Feature Engineering to Analyze the Energy-Water Nexus of a Full-Scale Wastewater Treatment Plant
20
作者 Shan-Shan Yang Xin-Lei Yu +8 位作者 Chen-Hao Cui Jie Ding Lei He Wei Dai Han-Jun Sun Shun-Wen Bai Yu Tao Ji-Wei Pang Nan-Qi Ren 《Engineering》 SCIE EI CAS CSCD 2024年第5期63-75,共13页
Wastewater treatment plants(WWTPs)are important and energy-intensive municipal infrastructures.High energy consumption and relatively low operating performance are major challenges from the perspective of carbon neutr... Wastewater treatment plants(WWTPs)are important and energy-intensive municipal infrastructures.High energy consumption and relatively low operating performance are major challenges from the perspective of carbon neutrality.However,water-energy nexus analysis and models for WWTPs have rarely been reported to date.In this study,a cloud-model-based energy consumption analysis(CMECA)of a WWTP was conducted to explore the relationship between influent and energy consumption by clustering its influent’s parameters.The principal component analysis(PCA)and K-means clustering were applied to classify the influent condition using water quality and volume data.The energy consumption of the WWTP is divided into five standard evaluation levels,and its cloud digital characteristics(CDCs)were extracted according to bilateral constraints and golden ratio methods.Our results showed that the energy consumption distribution gradually dispersed and deviated from the Gaussian distribution with decreased water concentration and quantity.The days with high energy efficiency were extracted via the clustering method from the influent category of excessive energy consumption,represented by a compact-type energy consumption distribution curve to identify the influent conditions that affect the steady distribution of energy consumption.The local WWTP has high energy consumption with 0.3613 kW·h·m^(-3)despite low influent concentration and volumes,across four consumption levels from low(I)to relatively high(IV),showing an unsatisfactory operation and management level.The average oxygenation capacity,internal reflux ratio,and external reflux ratio during high energy efficiency days recognized by further clustering were obtained(0.2924-0.3703 kg O_(2)·m^(-3),1.9576-2.4787,and 0.6603-0.8361,respectively),which could be used as a guide for the days with low energy efficiency.Consequently,this study offers a water-energy nexus analysis method to identify influent conditions with operational management anomalies and can be used as an empirical reference for the optimized operation of WWTPs. 展开更多
关键词 wastewater treatment plants Cloud-model theory Data mining Principal component analysis K-means clustering Cloud-model-based energy consumption analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部