One of the challenges of remote sensing and computer vision lies in the three-dimensional(3-D)reconstruction of individual trees by using automated methods through very high-resolution(VHR)data sets.However,a successf...One of the challenges of remote sensing and computer vision lies in the three-dimensional(3-D)reconstruction of individual trees by using automated methods through very high-resolution(VHR)data sets.However,a successful and complete 3-D reconstruction relies on precise delineation of the trees in two dimensions.In this paper,we present an original approach to detect and delineate citrus trees using unmanned aerial vehicles based on photogrammetric digital surface models(DSMs).The symmetry of the citrus trees in a DSM is handled by an orientationbased radial symmetry transform which is computed in a unique way.Next,we propose an efficient strategy to accurately build influence regions of each tree,and then we delineate individual citrus trees through active contours by taking into account the influence region of each canopy.We also present two efficient strategies to filter out erroneously detected canopy regions without having any height thresholds.Experiments are carried out on eight test DSMs composed of different types of citrus orchards with varying densities and canopy sizes.Extensive comparisons to the state-of-the-art approaches reveal that our proposed approach provides superior detection and delineation performances through supporting a nice balance between precision and recall measures.展开更多
The genus Citrus L. has a long controversial taxonomy history, and a well-resolved molecular phylogeny of the "true citrus fruit trees" group in the future will provide new information for advancing breeding techniq...The genus Citrus L. has a long controversial taxonomy history, and a well-resolved molecular phylogeny of the "true citrus fruit trees" group in the future will provide new information for advancing breeding techniques and developing better conservation strategies. In the present study, three cpDNA fragments (TrnL-TrnF, PsbH-PetB, and TrnS-TrnG) of 30 genotypes chosen from the six genera of the "true citrus fruit trees" group were analyzed. A molecular phylogenetic tree of the "true citrus fruit trees" group "~as reconstructed based on plastid DNA sequences. The results confirmed that the "true citrus fruit trees" group was monophyletic, and thereby the group was divided into genera as previously suggested based on morphological characters. The cpDNA data also suggested that Poncirus might be the first genus separated from the other five genera in the group. The genus Fortunella were of hybrid origin and Citrus might be as its putative paternal parent. The genera Microcitrus, Eremocitrus, and Clymenia were possibly monophyletic and their common ancestor might branch out from Citrus. Furthermore, the phylogenetic relationships within the Citrus genus were discussed.展开更多
基金This work was supported by the Scientific and Technical Research Council of Turkey(TUBITAK)[grant number 114Y671].
文摘One of the challenges of remote sensing and computer vision lies in the three-dimensional(3-D)reconstruction of individual trees by using automated methods through very high-resolution(VHR)data sets.However,a successful and complete 3-D reconstruction relies on precise delineation of the trees in two dimensions.In this paper,we present an original approach to detect and delineate citrus trees using unmanned aerial vehicles based on photogrammetric digital surface models(DSMs).The symmetry of the citrus trees in a DSM is handled by an orientationbased radial symmetry transform which is computed in a unique way.Next,we propose an efficient strategy to accurately build influence regions of each tree,and then we delineate individual citrus trees through active contours by taking into account the influence region of each canopy.We also present two efficient strategies to filter out erroneously detected canopy regions without having any height thresholds.Experiments are carried out on eight test DSMs composed of different types of citrus orchards with varying densities and canopy sizes.Extensive comparisons to the state-of-the-art approaches reveal that our proposed approach provides superior detection and delineation performances through supporting a nice balance between precision and recall measures.
基金supported by the National Natural Science Foundation of China (NSFC, 30671450)
文摘The genus Citrus L. has a long controversial taxonomy history, and a well-resolved molecular phylogeny of the "true citrus fruit trees" group in the future will provide new information for advancing breeding techniques and developing better conservation strategies. In the present study, three cpDNA fragments (TrnL-TrnF, PsbH-PetB, and TrnS-TrnG) of 30 genotypes chosen from the six genera of the "true citrus fruit trees" group were analyzed. A molecular phylogenetic tree of the "true citrus fruit trees" group "~as reconstructed based on plastid DNA sequences. The results confirmed that the "true citrus fruit trees" group was monophyletic, and thereby the group was divided into genera as previously suggested based on morphological characters. The cpDNA data also suggested that Poncirus might be the first genus separated from the other five genera in the group. The genus Fortunella were of hybrid origin and Citrus might be as its putative paternal parent. The genera Microcitrus, Eremocitrus, and Clymenia were possibly monophyletic and their common ancestor might branch out from Citrus. Furthermore, the phylogenetic relationships within the Citrus genus were discussed.