期刊文献+
共找到1,497篇文章
< 1 2 75 >
每页显示 20 50 100
Pervasive Attentive Neural Network for Intelligent Image Classification Based on N-CDE’s
1
作者 Anas W.Abulfaraj 《Computers, Materials & Continua》 SCIE EI 2024年第4期1137-1156,共20页
The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when co... The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s. 展开更多
关键词 Differential equations neural-controlled DE image classification attention maps N-CDE’s
下载PDF
GAN-DIRNet:A Novel Deformable Image Registration Approach for Multimodal Histological Images
2
作者 Haiyue Li Jing Xie +4 位作者 Jing Ke Ye Yuan Xiaoyong Pan Hongyi Xin Hongbin Shen 《Computers, Materials & Continua》 SCIE EI 2024年第7期487-506,共20页
Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial ne... Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types. 展开更多
关键词 Histological images registration deformable registration generative adversarial network cushing’s disease machine learning computer vision
下载PDF
A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification
3
作者 Tsu-Yang Wu Haonan Li +1 位作者 Saru Kumari Chien-Ming Chen 《Computers, Materials & Continua》 SCIE EI 2024年第4期19-46,共28页
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol... Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification. 展开更多
关键词 Adaptive Fick’s law algorithm spectral convolutional neural network metaheuristic algorithm intelligent optimization algorithm hyperspectral image classification
下载PDF
基于轻量化YOLOX-S与多阈值分割的矿山遥感图像去噪算法
4
作者 沈丹萍 赵爽 《金属矿山》 CAS 北大核心 2024年第9期175-180,共6页
矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后... 矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后针对矿山目标的特点,设计了一种多阈值分割方法消除图像中的噪声点。通过将图像分为若干个子区域,并对每个子区域采用不同的阈值进行二值化处理,最终将各子区域的二值化结果合并得到去噪后的图像。试验结果表明:该算法能够有效地去除矿山遥感图像中的噪声点,并且在保留目标特征的同时,大幅提升了图像质量。此外,由于采用了轻量化模型和多阈值分割算法,使得该算法具有较快的处理速度和较低的计算成本,适用于大规模图像数据的处理任务。 展开更多
关键词 矿山遥感图像 轻量化 YOLOX-s 阈值分割 图像去噪
下载PDF
基于MRI影像组学构建PD-1/PD-L1抑制剂治疗dMMR/MSI-H直肠癌疗效的预测模型
5
作者 张岚 周彦汝 +3 位作者 韩鼎盛 张嘉诚 何旭 刘鹏 《中国医学计算机成像杂志》 CSCD 北大核心 2024年第3期343-348,共6页
目的:探讨MRI影像组学模型在程序性细胞死亡蛋白-1(PD-1)/程序性细胞死亡-配体1(PD-L1)抑制剂联合全程新辅助治疗(TNT)局部进展期直肠癌(LARC)的疗效预测价值。方法:收集河南中医药大学第一附属医院PD-1/PD-L1抑制剂联合TNT治疗的80例... 目的:探讨MRI影像组学模型在程序性细胞死亡蛋白-1(PD-1)/程序性细胞死亡-配体1(PD-L1)抑制剂联合全程新辅助治疗(TNT)局部进展期直肠癌(LARC)的疗效预测价值。方法:收集河南中医药大学第一附属医院PD-1/PD-L1抑制剂联合TNT治疗的80例错配修复基因缺陷(dMMR)/微卫星高度不稳定(MSI-H)基因型中低位LARC患者的临床和影像资料。将入组患者按7∶3比例分为训练集和测试集,提取影像组学特征,从中筛选并构建影像组学模型。描绘影像组学模型的Rad-score与病理金标准之间的受试者工作特征(ROC)曲线,计算曲线下面积(AUC),并评价模型的诊断效能。采用决策曲线分析(DCA)计算风险阈值的范围,并评估临床获益情况。收集湖南省人民医院25例dMMR/MSI-H基因型LARC患者的影像资料作为外部验证集。结果:训练集、测试集及外部验证集三者之间的临床特征无统计学差异(P>0.05)。经过降维处理、t检验及一致性检验以及LASSO交叉验证后,筛选出一阶偏度特征和体积2个特征构建影像组学模型。训练集、测试集和外部验证集的影像组学预测模型ROC曲线的AUC、灵敏度、特异度、阳性预测值和阴性预测值分别为0.920、97.1%、85.7%、91.9%、94.7%;0.885、80.0%、88.9%、92.3%、72.7%;0.875、87.5%、88.9%、93.3%、80.0%。DCA曲线显示,当风险阈值范围为0%~82%时,采用影像组学模型预测LARC患者为病理完全缓解(pCR)的获益大于将所有患者都视为pCR或者无病理完全缓解(npCR)。结论:基于MRI影像组学构建的dMMR/MSI-H型局部进展期直肠癌PD-1/PD-L1抑制剂联合全程新辅助放化疗疗效预测模型,有较大潜力为不同基因分型的直肠癌患者制定个体化治疗策略提供量化依据。 展开更多
关键词 磁共振成像 影像组学 直肠肿瘤 局部进展期 程序性细胞死亡蛋白-1/程序性细胞死亡-配体1 全程新辅助放化疗
下载PDF
Interplay between the glymphatic system and neurotoxic proteins in Parkinson’s disease and related disorders:current knowledge and future directions 被引量:1
6
作者 Yumei Yue Xiaodan Zhang +2 位作者 Wen Lv Hsin-Yi Lai Ting Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1973-1980,共8页
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli... Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy. 展开更多
关键词 atypical parkinsonism glymphatic system magnetic resonance imaging neurotoxic proteins Parkinson’s disease
下载PDF
Neural stem cell-derived exosomes promote mitochondrial biogenesis and restore abnormal protein distribution in a mouse model of Alzheimer's disease 被引量:1
7
作者 Bo Li Yujie Chen +10 位作者 Yan Zhou Xuanran Feng Guojun Gu Shuang Han Nianhao Cheng Yawen Sun Yiming Zhang Jiahui Cheng Qi Zhang Wei Zhang Jianhui Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1593-1601,共9页
Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheime... Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheimer’s disease affects the entire brain,further research is needed to elucidate alterations in mitochondrial metabolism in the brain as a whole.Here,we investigated the expression of several important mitochondrial biogenesis-related cytokines in multiple brain regions after treatment with neural stem cell-derived exosomes and used a combination of whole brain clearing,immunostaining,and lightsheet imaging to clarify their spatial distribution.Additionally,to clarify whether the sirtuin 1(SIRT1)-related pathway plays a regulatory role in neural stem cell-de rived exosomes interfering with mitochondrial functional changes,we generated a novel nervous system-SIRT1 conditional knoc kout AP P/PS1mouse model.Our findings demonstrate that neural stem cell-de rived exosomes significantly increase SIRT1 levels,enhance the production of mitochondrial biogenesis-related fa ctors,and inhibit astrocyte activation,but do not suppress amyloid-βproduction.Thus,neural stem cell-derived exosomes may be a useful therapeutic strategy for Alzheimer’s disease that activates the SIRT1-PGC1αsignaling pathway and increases NRF1 and COXIV synthesis to improve mitochondrial biogenesis.In addition,we showed that the spatial distribution of mitochondrial biogenesis-related factors is disrupted in Alzheimer’s disease,and that neural stem cell-derived exosome treatment can reverse this effect,indicating that neural stem cell-derived exosomes promote mitochondrial biogenesis. 展开更多
关键词 Alzheimer’s disease mitochondrial biogenesis neural stem cell-derived exosome sIRT1-PGC1α regional brain distribution whole brain clearing and imaging
下载PDF
泸定M_(S)6.8地震发震机制研究——来自震前噪声成像和b值分布的共同约束
8
作者 花茜 裴顺平 +5 位作者 杨宜海 薛晓添 李磊 李佳蔚 刘翰林 刘巍 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第5期1767-1780,共14页
2022年9月5日四川省甘孜州泸定县发生了M_(S)6.8地震,打破了鲜水河断裂带东南段的大震"平静期",造成了重大自然灾害.清楚认识泸定地震震源区发震构造、地震活动性和应力状态对研究强震发震机制具有重要作用.本文利用震前在泸... 2022年9月5日四川省甘孜州泸定县发生了M_(S)6.8地震,打破了鲜水河断裂带东南段的大震"平静期",造成了重大自然灾害.清楚认识泸定地震震源区发震构造、地震活动性和应力状态对研究强震发震机制具有重要作用.本文利用震前在泸定地震震源区布设的50台短周期流动地震台阵观测资料及区域地震台网震相走时数据,分别采用背景噪声成像、双差定位和改进的b值成像技术,获得了震前震源区浅层高分辨率S波速度结构、地震空间分布及b值横向变化图像.结果揭示,泸定地震主震初始破裂起始于鲜水河断裂磨西段、具有高速异常和高应力特征的凹凸体内;主震西侧存在一条隐伏的正断型伴生分支断裂,5.0级的最大余震即发生在该断裂上;主震凹凸体的破裂同时造成了东南方向另一个较小高速凹凸体的破裂并形成密集余震群.由此可见,震源区跨断层高速异常"铆钉"结构和震前的高应力积累在整体上控制了泸定地震的发生和强余震活动.通过浅层高分辨率结构成像识别这种特殊的"铆钉"结构,同时通过b值成像识别高应力区,可有效评估断层的发震能力,对重点区域地震危险性研判具有极其重要的意义. 展开更多
关键词 泸定M_(s)6.8地震 s波速度结构 b值成像 高速凹凸体 地震发震机制
下载PDF
Multisensory mechanisms of gait and balance in Parkinson’s disease:an integrative review
9
作者 Stiven Roytman Rebecca Paalanen +4 位作者 Giulia Carli Uros Marusic Prabesh Kanel Teus van Laar Nico I.Bohnen 《Neural Regeneration Research》 SCIE CAS 2025年第1期82-92,共11页
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ... Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases. 展开更多
关键词 aging BALANCE encephalography functional magnetic resonance imaging GAIT multisensory integration Parkinson’s disease positron emission tomography sOMATOsENsORY VEsTIBULAR visual
下载PDF
基于特征工程的S-FCN火灾图像检测方法
10
作者 李海 熊升华 孙鹏 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期191-201,共11页
针对复杂背景下火灾图像检测深度学习算法存在的计算复杂度高、检测实时性差等问题,提出一种基于特征工程的单隐层全连接网络(S-FCN)火灾图像检测方法。首先,从图像中提取多色彩空间颜色特征,并使用互信息量进行多色彩空间颜色特征降维... 针对复杂背景下火灾图像检测深度学习算法存在的计算复杂度高、检测实时性差等问题,提出一种基于特征工程的单隐层全连接网络(S-FCN)火灾图像检测方法。首先,从图像中提取多色彩空间颜色特征,并使用互信息量进行多色彩空间颜色特征降维;其次,简化深度学习模型的网络结构,将单隐层全连接网络作为其主干网络,其中,多色彩空间下的颜色特征能够更好地表征火灾烟雾与火焰,多色彩空间颜色特征降维能够有效降低输入特征的冗余度,单隐层全连接网络能够有效减少模型在传递过程中的参数数量;最后,将该方法在真实的复杂背景火灾图像数据集上进行试验评估。结果表明:所提方法取得的检测精度为93.83%,取得的检测实时性帧率为10869帧/s,能够实现复杂场景下高精度、高速度的火灾图像检测。 展开更多
关键词 特征工程 单隐层全连接网络(s-FCN) 火灾图像 检测方法 色彩空间 特征降维
下载PDF
Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism
11
作者 Yujie Yang Xinyi Li +7 位作者 Jiaying Lu Jingjie Ge Mingjia Chen Ruixin Yao Mei Tian Jian Wang Fengtao Liu Chuantao Zuo 《Neural Regeneration Research》 SCIE CAS 2025年第1期93-106,共14页
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.... Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders. 展开更多
关键词 aromatic amino acid decarboxylase brain imaging dopamine transporter Parkinson’s disease PARKINsONIsM positron emission tomography presynaptic dopaminergic function vesicle monoamine transporter type 2
下载PDF
基于FPGA的AES和ECC算法图像加密
12
作者 方应李 方玉明 《电子科技》 2024年第6期92-97,共6页
随着数字图像的使用次数日益增多,保护机密图像数据免受未经授权的访问较为重要。针对数字图像在通信、存储和传输等领域存在的安全问题,文中基于对称算法模型和非对称算法模型的优点提出一种具有高安全性和高速度性的数字信封技术密码... 随着数字图像的使用次数日益增多,保护机密图像数据免受未经授权的访问较为重要。针对数字图像在通信、存储和传输等领域存在的安全问题,文中基于对称算法模型和非对称算法模型的优点提出一种具有高安全性和高速度性的数字信封技术密码方案。该方案以AES(Advanced Encryption Standard)和ECC(Elliptic Curve Cryptography)为基础,经优化后用于对称密钥共享的ECC硬件架构来提高密钥的安全性。通过加入伪随机数、使用列移位替代列混淆运算以及三维S-box等方式对传统AES进行优化,在保持香农扩散和混淆原理的同时降低了时间复杂性。基于FPGA(Field Programmable Gate Array)实现AES算法的数字图像加密仿真以及性能测试。测试结果表明,所提密码方案具有快速性、高安全性和有效性等优点,能够有效地实现图像加密。 展开更多
关键词 数字图像 数字信封 AEs算法 ECC算法 三维s-box FPGA 信息熵 相关系数
下载PDF
经会阴三维超声联合SWE评估分娩方式对初产妇肛提肌的影响
13
作者 董佳文 史莉玲 +2 位作者 张美丽 白肖梅 李建丽 《医学研究杂志》 2024年第9期127-131,共5页
目的探讨经会阴三维超声联合剪切波弹性成像技术(shear wave elastography,SWE)在评估分娩方式对初产妇肛提肌形态及功能影响中的应用价值,为早期诊断盆底功能障碍性疾病(pelvic floor disorders,PFD)提供新方法。方法选取在笔者医院分... 目的探讨经会阴三维超声联合剪切波弹性成像技术(shear wave elastography,SWE)在评估分娩方式对初产妇肛提肌形态及功能影响中的应用价值,为早期诊断盆底功能障碍性疾病(pelvic floor disorders,PFD)提供新方法。方法选取在笔者医院分娩后6~8周复查的92例初产妇为产后组,根据其分娩方式分为经阴道分娩组(n=45)和剖宫产组(n=47),选取同期健康未育女性作为对照组(n=43)。采用经会阴三维超声联合SWE进行检查,比较各组间不同状态下肛提肌裂孔形态参数及弹性参数的差异。结果经阴道分娩组在静息、最大缩肛及最大Valsalva状态下肛提肌裂孔面积(levator ani hiatus area,LHA)均大于剖宫产组和对照组,剖宫产组大于对照组,差异有统计学意义(P<0.01);经阴道分娩组在静息及最大缩肛状态下弹性参数较对照组、剖宫产组均减小,差异有统计学意义(P<0.01);而剖宫产组与对照组弹性参数比较,差异无统计学意义(P>0.05);最大Valsalva状态与静息状态下LHA差值(ΔA′)与双侧PR杨氏模量值收缩前后的差值(ΔE)呈显著负相关(左侧r=-0.444,P=0.008;右侧r=-0.488,P=0.002)。结论经会阴三维超声联合SWE可定量评估肛提肌的形态及功能,为PFD的早期诊断提供依据。 展开更多
关键词 分娩方式 肛提肌 耻骨直肠肌 剪切波弹性成像 杨氏模量值
下载PDF
采用DenseNet模型的AD自动分类方法
14
作者 陈玉思 陈培坤 叶宇光 《宁德师范学院学报(自然科学版)》 2024年第1期65-72,共8页
为研究深度学习算法对阿尔茨海默病分类的准确性,提出密集卷积神经网络方法,对阿尔茨海默病进行分类.利用预处理后的数据训练密集卷积神经网络结构,并分类阿尔茨海默病和认知正常者.测试结果表明,文中方法获得的分类准确率为98.91%,分... 为研究深度学习算法对阿尔茨海默病分类的准确性,提出密集卷积神经网络方法,对阿尔茨海默病进行分类.利用预处理后的数据训练密集卷积神经网络结构,并分类阿尔茨海默病和认知正常者.测试结果表明,文中方法获得的分类准确率为98.91%,分类阿尔茨海默病和轻度认知障碍的准确率为94.54%,准确率较其他算法有一定提升,为阿尔茨海默病的精准分类提供了一种有效的解决方案. 展开更多
关键词 阿尔茨海默病 脑部磁共振成像图像 深度学习 密集的网络
下载PDF
基于改进YOLOv5s的绝缘子定位检测及红外故障识别
15
作者 任毅 王鹏 +3 位作者 倪彬 顾鹏 汪易萱 刘凯波 《测控技术》 2024年第8期7-14,22,共9页
在绝缘子定位检测和热故障识别中,由于绝缘子红外图像的背景干扰严重,导致平均识别准确率低,为了实现精确定位、检测绝缘子位置和提高识别其热故障的可靠性和准确性,提出了一种基于改进YOLOv5s的绝缘子定位检测和红外故障识别方法。首先... 在绝缘子定位检测和热故障识别中,由于绝缘子红外图像的背景干扰严重,导致平均识别准确率低,为了实现精确定位、检测绝缘子位置和提高识别其热故障的可靠性和准确性,提出了一种基于改进YOLOv5s的绝缘子定位检测和红外故障识别方法。首先,将全局上下文注意力机制与YOLOv5s Backbone部分的C3结构进行融合,提出一种新的结构——C3GC,增强了模型提取特征的能力,并且减少了其计算量。其次,将损失函数替换为VariFocal Loss,提升了模型的召回率,解决了模型漏检的问题。最后,通过引入转置卷积,动态地学习需要补充的参数,减少了模型在上采样过程中特征的丢失,提升了检测效果。实验与测试结果表明,改进后的方法与原YOLOv5s相比,定位精度提升了1.3个百分点,针对故障点的检测精度提升了4个百分点,平均精度提升了2.8个百分点,并且其精确率和召回率均有提升。 展开更多
关键词 YOLOv5s 红外图像 定位检测 故障检测 热故障
下载PDF
萤火虫成像联合应变弹性成像校正人工智能S-Detect技术对乳腺囊实性肿块良恶性的诊断价值
16
作者 袁杰 汪成 笪应芬 《中国医疗器械杂志》 2024年第4期426-429,439,共5页
目的 探讨萤火虫成像(micropure imaging, MI)联合应变弹性成像(strain elastography, SE)校正人工智能(artificial intelligence, AI)S-Detect技术对乳腺囊实性肿块良恶性的诊断价值。方法 根据145个乳腺囊实性肿块的MI和SE的表现对其S... 目的 探讨萤火虫成像(micropure imaging, MI)联合应变弹性成像(strain elastography, SE)校正人工智能(artificial intelligence, AI)S-Detect技术对乳腺囊实性肿块良恶性的诊断价值。方法 根据145个乳腺囊实性肿块的MI和SE的表现对其S-Detect诊断结果进行校正。以术后病理结果为金标准,计算校正前后的诊断敏感度、特异度、准确度,并绘制两组受试者操作特征(receiver operating characteristic, ROC)曲线,比较曲线下面积。结果 病理良性80个,恶性65个。S-Detect经过校正后,诊断敏感度、特异度、准确度以及ROC曲线下面积均较校正前有所提高。结论 MI与SE联合校正S-Detect的诊断结果,能够提高对乳腺囊实性肿块良恶性的诊断效能。 展开更多
关键词 超声检查 乳腺囊实混合性肿块 人工智能 s-Detect技术 萤火虫成像 应变弹性成像
下载PDF
Analysis of the Tragic Female Images in Eugene O'Neill's Plays 被引量:1
17
作者 李琳 《海外英语》 2011年第8X期287-288,共2页
Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope... Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope towards the future life, but both make wrong choices; in the following years, both suffer a lot from these wrong choices, and feel regretful. This paper tries to explore these two tragic female images. 展开更多
关键词 female images Beyond the HORIZON Long Day’s JOURNEY into NIGHT
下载PDF
Tourism Image Plan for Wunvfeng National Forest Park
18
作者 李辉 《Journal of Landscape Research》 2011年第9期86-87,91,共3页
After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The s... After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The slogan of Wunvfeng National Forest Park had been identified as "tour of nature and mythology-Wunvfeng", and the park's emblem, symbolic mascots, spokesman of tourism image and tourist souvenirs had been set, so as to better display tourist advantages of Wunvfeng National Forest Park and create more economic and social benefits. 展开更多
关键词 Wunvfeng NATIONAL FOREsT PARK TOURIsM image PLAN Park’s EMBLEM Identification system
下载PDF
磁共振弥散加权成像联合血清SKP2检测在乳腺癌诊断中的价值 被引量:1
19
作者 任文妍 庄琰 +1 位作者 杜森 赵森 《临床与病理杂志》 CAS 2023年第4期652-659,共8页
目的:探讨磁共振弥散加权成像(diffusion-weighted magnetic resonance imaging,DWI)联合血清S期激酶相关蛋白酶2(S-phase kinase-related protease 2,SKP2)检测在乳腺癌诊断中的价值。方法:选取2020年5月至2022年4月河南大学第一附属... 目的:探讨磁共振弥散加权成像(diffusion-weighted magnetic resonance imaging,DWI)联合血清S期激酶相关蛋白酶2(S-phase kinase-related protease 2,SKP2)检测在乳腺癌诊断中的价值。方法:选取2020年5月至2022年4月河南大学第一附属医院诊治的女性单发乳腺肿块患者166例,最终病理检查确诊84例为乳腺癌(乳腺癌组)、82例为乳腺良性病变(良性病变组)。所有患者入院24 h内行DWI检查,采用实时荧光定量PCR法检测血清SKP2 mRNA表达水平;绘制受试者工作特征(receiver operating characteristic,ROC)曲线分析血清SKP2 mRNA及表观扩散系数(apparent diffusion coefficient,ADC)诊断乳腺癌的效能;采用Kappa检验分析DWI单独及联合血清SKP2 mRNA诊断乳腺癌时与病理诊断结果的一致性。结果:DWI显示乳腺癌组形状不规则、边界模糊、淋巴结肿大、毛刺征、血管影增多比例显著高于良性病变组(P<0.05)。b值取600、800、1000 s/mm^(2)时,乳腺癌组DWI图像中的ADC均显著低于良性病变组(P<0.05)。b为600、800、1000 s/mm2的DWI诊断乳腺癌与病理诊断结果一致性均为较高(Kappa值为0.723、0.747、0.711,P<0.05)。乳腺癌组血清SKP2 mRNA表达水平显著高于良性病变组(P<0.05)。血清SKP2 mRNA、ADC诊断乳腺癌的曲线下面积(area under the curve,AUC)分别为0.859(95%CI 0.803~0.915)、0.905(95%CI 0.858~0.951),特异度分别为80.49%、89.02%,灵敏度分别为77.38%、85.71%。DWI联合血清SKP2 mRNA诊断乳腺癌与病理诊断结果一致性极高(Kappa值为0.855,P<0.05)。DWI联合血清SKP2 mRNA诊断乳腺癌的灵敏度、阴性预测值明显高于DWI、血清SKP2 mRNA单一检测诊断,准确度高于血清SKP2 mRNA单一检测诊断(P<0.05)。结论:DWI联合血清SKP2检测诊断乳腺癌具有良好的辅助参考价值,二者联合后灵敏度、阴性预测值较高。 展开更多
关键词 乳腺癌 磁共振弥散加权成像 s期激酶相关蛋白酶2 诊断
下载PDF
Image Segmentation of Brain MR Images Using Otsu’s Based Hybrid WCMFO Algorithm 被引量:6
20
作者 A.Renugambal K.Selva Bhuvaneswari 《Computers, Materials & Continua》 SCIE EI 2020年第8期681-700,共20页
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee... In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm. 展开更多
关键词 Hybrid WCMFO algorithm Otsu’s function multilevel thresholding image segmentation brain MR image
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部