The optimization of inspection intervals for composite structures has been proposed,but only one damage type,dent damage,has been addressed so far.The present study focuses on the two main damage types of dent and del...The optimization of inspection intervals for composite structures has been proposed,but only one damage type,dent damage,has been addressed so far.The present study focuses on the two main damage types of dent and delamination,and a model for optimizing the inspection interval of composite structures is proposed to minimize the total maintenance cost on the premise that the probability of structure failure will not exceed the acceptable level.In order to analyze the damage characteristics and the residual strength of the composite structure,the frequency,energy,size,and depth of the damage are studied,and the situation of missing detection during the inspection is considered.The structural residual strength and total maintenance cost are quantified corresponding to different inspection intervals.The proposed optimization method relieves the constraints in previous simulation methods,and is more consistent with the actual situation.Finally,the outer wing of aircraft is taken as an example,and with the historical cases and experimental data,the optimization method is verified.The optimal inspection interval is shorter than the actually implemented inspection interval,and the corresponding maintenance cost is reduced by 23.3%.The result shows the feasibility and effectiveness of the proposed optimization method.展开更多
Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexi...Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexity.A scientific and rational sectorization of TMA can optimize airspace resources,and sufficiently utilize the control of human resources to ensure the safety of TMA.The functional sectorization model was established based on the route structure of arriving and departing aircraft as well as controlling requirements.Based on principles of sectorization and topological relations within a network,the arrival and departure sectorization model was established,using tree based ant colony algorithm(ACO)searching.Shanghai TMA was taken as an example to be sectorizaed,and the result showed that this model was superior to traditional ones when arrival and departure routes were separated at dense airport terminal airspace.展开更多
基金supported by the National Natural Science Foundation of China(U1533202)the Fundamental Research Funds for the Central Universities(NP2019408)。
文摘The optimization of inspection intervals for composite structures has been proposed,but only one damage type,dent damage,has been addressed so far.The present study focuses on the two main damage types of dent and delamination,and a model for optimizing the inspection interval of composite structures is proposed to minimize the total maintenance cost on the premise that the probability of structure failure will not exceed the acceptable level.In order to analyze the damage characteristics and the residual strength of the composite structure,the frequency,energy,size,and depth of the damage are studied,and the situation of missing detection during the inspection is considered.The structural residual strength and total maintenance cost are quantified corresponding to different inspection intervals.The proposed optimization method relieves the constraints in previous simulation methods,and is more consistent with the actual situation.Finally,the outer wing of aircraft is taken as an example,and with the historical cases and experimental data,the optimization method is verified.The optimal inspection interval is shorter than the actually implemented inspection interval,and the corresponding maintenance cost is reduced by 23.3%.The result shows the feasibility and effectiveness of the proposed optimization method.
基金supported by the National Natural Science Foundation of China(Nos.U1233101,71271113)the Fundamental Research Funds for the Central Universities(No.NS2016062)
文摘Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexity.A scientific and rational sectorization of TMA can optimize airspace resources,and sufficiently utilize the control of human resources to ensure the safety of TMA.The functional sectorization model was established based on the route structure of arriving and departing aircraft as well as controlling requirements.Based on principles of sectorization and topological relations within a network,the arrival and departure sectorization model was established,using tree based ant colony algorithm(ACO)searching.Shanghai TMA was taken as an example to be sectorizaed,and the result showed that this model was superior to traditional ones when arrival and departure routes were separated at dense airport terminal airspace.