期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Al 1060/Pure Iron Clad Materials by Vacuum Roll Bonding and Their Solderability 被引量:2
1
作者 Qian Wang Xuesong Leng +3 位作者 Jiuchun Yan Weibing Guo Yu Fu Tianming Luan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第10期948-954,共7页
Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength... Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength were investigated. The interfacial microstructure was investigated and the mechanical properties of the joint were evaluated by shear testing. The bonding strength of the clad materials was generally enhanced by increasing the total reduction or preheating temperature, which caused the metal interface to flatten. No obvious reaction or diffusion layer was observed at the interface between Al 1060 and pure iron. The bonding strength increased with decreasing the initial thickness of the Al 1060 sheets. The Al 1060/pure iron clad materials were soldered with Zn-Al alloy by using an ultrasonic-assisted method. Strong bonding of the Al 1060 layer and Al 7N01 was realized without obvious Al 1060 dissolution or effect on the initial interface of Al 1060/pure iron clad materials by soldering at relatively low temperature. 展开更多
关键词 Al 1060/pure iron clad materials Vacuum roll bonding Bonding strength Ultrasonic-assisted soldering
原文传递
THE INTERFACE OF TERNARY-BORIDE-BASED HARD CLADDING MATERIAL
2
作者 Y.G.Wang Z.Q.Li D.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期47-50,共4页
The interfacial microstructure of ternary-boride-based hard cladding material (YF-2) has been studied using scanning electron microanalyser (SEM), X-ray diffraction (XRD) and energy disperse spectroscopy (EDS). Result... The interfacial microstructure of ternary-boride-based hard cladding material (YF-2) has been studied using scanning electron microanalyser (SEM), X-ray diffraction (XRD) and energy disperse spectroscopy (EDS). Results show that there are chemical reactions and elements diffusion in the interfacial zone, which make the interface bonding well and bonding strength ideal at the interface. The results gotten by studying of crack produced by Vickers indentation technique in the interfacial zone show that it is difficult to produce crack in the interface, the crack length in the cladding layer is longer than that to the interface, the crack which propagate to the interface stops at the interface rather than propagates along the interface. This suggests negligible residual stresses have developed because of thermal expansion mismatch. The bonding strength of the interface is 550MPa, which has been gotten by cutting test. The result gotten by analyzing the fracture surface shows that the fracture occurs at the side of cladding layer, which confirms that the bonding strength at the interface is higher than that in the cladding layer. 展开更多
关键词 ternary boride cladding material INTERFACE micro structure
下载PDF
Corrosion of candidate materials for supercritical water-cooled reactor
3
作者 ZHANG Lefu~(1)),BAO Yichen~(1)) and TANG Rui~(2)) 1) School of Nuclear Sci.&Eng,Shanghai Jiao Tong Univ.,Shanghai 200240,China 2) National Key Laboratory for Nuclear Fuel and Materials,Nuclear Power Institute of China,Chengdu 610041,China 《Baosteel Technical Research》 CAS 2010年第S1期71-,共1页
Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages... Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages of 10%higher efficiency,simpler system design,better sustainability,and so on. However,the selection of materials for fuel cladding and reactor internals of SCWR is facing a great challenge. Corrosion in supercritical steam is of the first important issue to be solved to meet the stringent requirement of the reactor internal components.Corrosion screening tests were conducted on candidate materials for nuclear fuel cladding and reactor internals of supercritical water reactor(SCWR) in static and re-circulating autoclave at the temperatures of 550,600 and 650℃,pressure of about 25 MPa,deaerated or saturated dissolved hydrogen(STP). Nickel base alloy type Hastelloy C276,austenitic stainless steels type 304NG,AL-6XN,HR3C.NF709 and SAVE 25,ferritic/martensitic(F/M) steel type P92,P122 and 410,and oxide dispersion strengthened steel MA 956,are tested.This paper presents corrosion rate,and focuses on the formation and breakdown of corrosion oxide film,and proposes the future trend for the development of SCWR internal structure materials. 展开更多
关键词 supercritical water cooled reactor cladding material CORROSION protective oxide film
下载PDF
Fabrication of Fe–TiC–Al_2O_3 composites on the surface of steel using a TiO_2–Al–C–Fe combustion reaction induced by gas tungsten arc cladding
4
作者 Mahmood Sharifitabar Jalil Vahdati Khaki Mohsen Haddad Sabzevar 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期193-204,共12页
The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel.For this purpose,TiO2-3C and 3TiO2-4Al-3C-xFe(0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surfac... The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel.For this purpose,TiO2-3C and 3TiO2-4Al-3C-xFe(0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate.The mixtures and substrate were then melted using a gas tungsten arc cladding process.The results show that the martensite forms in the layer produced by the TiO2-3C mixture.However,ferrite-Fe3C-TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2-4Al-3C mixture.The addition of Fe to the TiO2-4Al-3C reactants with the content from 0 to 20wt%increases the volume fraction of particles,and a composite containing approximately 9vol%TiC and A12O3 particles forms.This composite substantially improves the substrate hardness.The mechanism by which Fe particles enhance the TiC + A12O3 volume fraction in the composite is determined. 展开更多
关键词 composite coatings iron-based materials combustion cladding microstructure microhardness
下载PDF
In situ synthesis of Fe-based alloy clad coatings containing TiB_2–TiN –(h-BN)
5
作者 Shao-qun Jiang Gang Wang +3 位作者 Qing-wen Ren Chuan-duo Yang Ze-hua Wang and Ze-hua Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期613-619,共7页
Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti... Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1–2.8 mm from the coating surface is about Hv0.2 551.5. 展开更多
关键词 iron-based materials coatings plasma cladding in situ synthesis microhardness
下载PDF
Current state and prospect on the development of advanced nuclear fuel system materials:A review
6
作者 Di Yun Chenyang Lu +5 位作者 Zhangjian Zhou Yingwei Wu Wenbo Liu Shaoqiang Guo Tan Shi James F.Stubbins 《Materials Reports(Energy)》 2021年第1期69-87,共19页
The intricate balance between reactor economics and safety necessitates the emergence of new and advanced nuclear systems and,very importantly,advanced materials,which can overcome current shortcomings and bring about... The intricate balance between reactor economics and safety necessitates the emergence of new and advanced nuclear systems and,very importantly,advanced materials,which can overcome current shortcomings and bring about more economic nuclear systems with designed-in inherent safety features.These advances will achieve greater safety and better nuclear reactor economics by reaching longer reactor lives with higher levels neutron irradiation,and by providing higher operation temperatures and resistance to more aggressive corrosive environments.This paper provides a review of the current state of research and development on innovative nuclear fuel materials design and development which have the potential of benefiting simultaneously reactor economics and safety.Our discussion focuses on three areas of research:Accident-tolerant Fuels(ATFs),Oxidation Dispersion Strengthened(ODS)steels and High Entropy Alloys(HEAs).The paper also gives a prospective description of future research activities on these materials. 展开更多
关键词 Nuclear fuel materials Nuclear cladding materials Accident-tolerant fuel(ATF) Oxidation dispersion strengthened(ODS)steel High entropy alloy(HEA)
下载PDF
Development of Glass Optical Fibers 1970-2020,Providing Us the Digitalized Communication World
7
作者 Tarja T.Volotinen CBertil A.rvidsson 《材料科学与工程(中英文A版)》 2023年第1期1-12,共12页
New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high d... New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high dispersion at communication signals above 2 Mbit/s.Already the first commercially available multimode optical fibers(1979),developed from pure silica glass with a Ge-doped core,had much lower attenuation at signal frequencies of the order of 2-9 Mbit/s and above it.However,fiber core,cladding and coating materials,cable structures and materials,as well as manufacturing-,measurements-and test methods have been needed to be developed much further to get the reliable fiber cable communication networks.The important development stages and solutions to the most significant childhood problems of the optical fibers and cables are described in this paper.Now over 500 million km of optical fibers are manufactured and installed worldwide for the communication networks.The understanding of how to make the fibers with the very good transmission,mechanical and reliability properties exists at the manufacturers of the fibers and cables. 展开更多
关键词 Optical fibers attenuation problems dispersion problems mechanical strength problems reliability core and cladding materials transmission properties mechanical properties
下载PDF
Effect of Heat Treatment Process on Mechanical Properties and Microstructure of Modified CNS-ⅡF/M Steel
8
作者 YANG Ying YAN Qing-zhi MA Rong GE Chang-chun 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第12期65-70,共6页
Ferritic/martensitic(F/M) steels have been recommended as one of the candidate materials for supercritical water cooled reactor(SCWR) in-core components use for its high thermal conductivity,low thermal expansion ... Ferritic/martensitic(F/M) steels have been recommended as one of the candidate materials for supercritical water cooled reactor(SCWR) in-core components use for its high thermal conductivity,low thermal expansion coefficient and inherently good dimensional stability under irradiation condition in comparison to austenitic steel.CNS-Ⅱ F/M steel which has good mechanical properties was one of the 9-12Cr F/M steels designed for SCWR in the previous work.In this study a modified CNS-Ⅱ F/M steel was used and it's ultimate tensile strength was 925 MPa at room temperature and 483 MPa at 600 ℃ after optimizing heat treatment parameter.The ductile to brittle transition temperature of modified CNS-Ⅱ F/M steel is-55 ℃.Those are at the same level or even higher than that of CNS-Ⅱ and some commercial F/M steels nominated for SCWR in-core component use.The transmission electron microscope(TEM) results showed that the mechanical properties of the tempered martensite was closely related to the decomposition stage of the martensite. 展开更多
关键词 supercritical water reactor ferritic/martensitic steel cladding material
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部