采用溶胶-凝胶的方法低温制备石榴石结构的固体电解质Li5La3Ta2O12,并用其包覆Li Mn2O4来改善材料的电化学性能。通过XRD,SEM和TEM等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安、交流阻抗等测试分析材料的电化...采用溶胶-凝胶的方法低温制备石榴石结构的固体电解质Li5La3Ta2O12,并用其包覆Li Mn2O4来改善材料的电化学性能。通过XRD,SEM和TEM等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安、交流阻抗等测试分析材料的电化学性能。研究结果表明:Li5La3Ta2O12包覆的Li Mn2O4材料与未包覆的材料相比,其电化学性能得到明显改善,经过150次循环后包覆材料的放电比容量保持率为92%,在高倍率10C(C为倍率)下包覆材料放电比容量为61.2 m A·h/g,而未包覆材料放电比容量仅为40.7 m A·h/g;包覆Li5La3Ta2O12后,Li Mn2O4的阻抗明显减小,大幅度提高了其循环性能和倍率性能。展开更多
Conditions of gallium plating of metal electrodes were studied in the paper. It was found that stability of gallium cover depends on the material and is increasing in the raw: stainless steel 08Х18Н12Т < Steel 1...Conditions of gallium plating of metal electrodes were studied in the paper. It was found that stability of gallium cover depends on the material and is increasing in the raw: stainless steel 08Х18Н12Т < Steel 1, Steel 2, Steel 3, Steel 45 < Ni < Cd < Cu. Phase composition of the electrode surface layer obtained after gallium plating was studied. It was found that gallium with nickel form Ga36Ni64(Ga Ni2) compound and gallium with copper form CuGa2compound. Different acids were used for electrode leaching: H2SO4;HNO3;H3PO4;HCI. It was shown that only hydrochloric acid is suit-able for gallium plating of the electrodes.展开更多
文摘采用溶胶-凝胶的方法低温制备石榴石结构的固体电解质Li5La3Ta2O12,并用其包覆Li Mn2O4来改善材料的电化学性能。通过XRD,SEM和TEM等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安、交流阻抗等测试分析材料的电化学性能。研究结果表明:Li5La3Ta2O12包覆的Li Mn2O4材料与未包覆的材料相比,其电化学性能得到明显改善,经过150次循环后包覆材料的放电比容量保持率为92%,在高倍率10C(C为倍率)下包覆材料放电比容量为61.2 m A·h/g,而未包覆材料放电比容量仅为40.7 m A·h/g;包覆Li5La3Ta2O12后,Li Mn2O4的阻抗明显减小,大幅度提高了其循环性能和倍率性能。
文摘Conditions of gallium plating of metal electrodes were studied in the paper. It was found that stability of gallium cover depends on the material and is increasing in the raw: stainless steel 08Х18Н12Т < Steel 1, Steel 2, Steel 3, Steel 45 < Ni < Cd < Cu. Phase composition of the electrode surface layer obtained after gallium plating was studied. It was found that gallium with nickel form Ga36Ni64(Ga Ni2) compound and gallium with copper form CuGa2compound. Different acids were used for electrode leaching: H2SO4;HNO3;H3PO4;HCI. It was shown that only hydrochloric acid is suit-able for gallium plating of the electrodes.