The construction industry needs modern construction methodology and technology to improve sustainability and production performance.Building Information Modelling(BIM)technology supports improving the quality of produ...The construction industry needs modern construction methodology and technology to improve sustainability and production performance.Building Information Modelling(BIM)technology supports improving the quality of products by reducing design and construction defects,risks to the health and safety of workers,and reduce overall project cost and delivery time.The BIM has capabilities,but it is still undiscovered and unable to exploit the full scale of its benefits in the Architectural Engineering and Construction(AEC)industry.There is a trend to adopt the BIM level 1,which is limited to 2D and only in a few cases 3D models uses in the design and construction of residential and commercial buildings,particularly in Nepal.Hence,this paper focuses on providing insight into the BIM benefits and identifies the potential barriers while adopting BIM Level 3 in Nepal.This was accomplished by developing a 4DBIM model of a multi-story residential building in Nepal and conducting the industry survey via focus group with the AEC professionals based on the developed 4DBIM model.A comprehensive literature review was conducted and presented the findings of the BIM benefits and barriers while adopting BIM.The study found that commercial and governmental projects can immediately be adopted BIM technology.It is concluded that the unavailability of skilled BIM users and the lack of proper policies for BIM adoption are key barriers in Nepal.Hence,the new policy is required to achieve and exploit the full scale of the BIM benefits and improve the project delivery in terms of quality,cost and time including the health and safety of workers and the sustainability of the AEC industry.展开更多
现代建筑空间日趋复杂,功能要求不断提升,如何协调设备管道之间以及管道与建筑、结构之间的排布,一直困扰着设计师。传统叠放图纸检测碰撞的方法投入极大,又容易存在疏漏。随着建筑信息化模型(Building Information Modeling,BIM)技术...现代建筑空间日趋复杂,功能要求不断提升,如何协调设备管道之间以及管道与建筑、结构之间的排布,一直困扰着设计师。传统叠放图纸检测碰撞的方法投入极大,又容易存在疏漏。随着建筑信息化模型(Building Information Modeling,BIM)技术的发展,这一过程可以依靠计算机程序完成。首先利用BIM设计平台分别构建建筑、结构、暖通、给排水和电气专业的信息化模型,然后将各专业模型整合到一起构成完整的建筑模型,再将整体模型导入计算机分析工具中检测碰撞冲突的类型及位置并生成报告。这种方法可以在设计阶段高效地协调设备管线,极大地降低施工过程中因设计不当造成返工的可能性。展开更多
文摘The construction industry needs modern construction methodology and technology to improve sustainability and production performance.Building Information Modelling(BIM)technology supports improving the quality of products by reducing design and construction defects,risks to the health and safety of workers,and reduce overall project cost and delivery time.The BIM has capabilities,but it is still undiscovered and unable to exploit the full scale of its benefits in the Architectural Engineering and Construction(AEC)industry.There is a trend to adopt the BIM level 1,which is limited to 2D and only in a few cases 3D models uses in the design and construction of residential and commercial buildings,particularly in Nepal.Hence,this paper focuses on providing insight into the BIM benefits and identifies the potential barriers while adopting BIM Level 3 in Nepal.This was accomplished by developing a 4DBIM model of a multi-story residential building in Nepal and conducting the industry survey via focus group with the AEC professionals based on the developed 4DBIM model.A comprehensive literature review was conducted and presented the findings of the BIM benefits and barriers while adopting BIM.The study found that commercial and governmental projects can immediately be adopted BIM technology.It is concluded that the unavailability of skilled BIM users and the lack of proper policies for BIM adoption are key barriers in Nepal.Hence,the new policy is required to achieve and exploit the full scale of the BIM benefits and improve the project delivery in terms of quality,cost and time including the health and safety of workers and the sustainability of the AEC industry.
文摘现代建筑空间日趋复杂,功能要求不断提升,如何协调设备管道之间以及管道与建筑、结构之间的排布,一直困扰着设计师。传统叠放图纸检测碰撞的方法投入极大,又容易存在疏漏。随着建筑信息化模型(Building Information Modeling,BIM)技术的发展,这一过程可以依靠计算机程序完成。首先利用BIM设计平台分别构建建筑、结构、暖通、给排水和电气专业的信息化模型,然后将各专业模型整合到一起构成完整的建筑模型,再将整体模型导入计算机分析工具中检测碰撞冲突的类型及位置并生成报告。这种方法可以在设计阶段高效地协调设备管线,极大地降低施工过程中因设计不当造成返工的可能性。