In this study a 10-storied residential building model was employed to clarify the ventilation characteristics of the atrium and the rooms,which were effected by the different forms of lateral openings.The experiment w...In this study a 10-storied residential building model was employed to clarify the ventilation characteristics of the atrium and the rooms,which were effected by the different forms of lateral openings.The experiment was conducted under the combined effect of wind force and thermal buoyancy,and the similarity requirements were satisfied.The results have shown that the different forms of lateral openings cause the different ventilation effect of the building,and also have some certain regularity.The conclusions provide a theoretical foundation for how to use the ventilation of atrium better in high-rise residential building.展开更多
In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and ...In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.展开更多
In high-rise buildings with large indoor and outdoor temperature difference,neglecting the effect of stack effect in smoke exhaust shafts may cause calculation error of the fluid network model.In this paper,the mathem...In high-rise buildings with large indoor and outdoor temperature difference,neglecting the effect of stack effect in smoke exhaust shafts may cause calculation error of the fluid network model.In this paper,the mathematical model of kitchen smoke exhaust system considering the influence of stack effect was put forward and it can be inserted different range hood sub-models.Compared with the results of six working conditions of the model without considering the stack effect,the error of the proposed model were reduced by 7.6%,4.3%,4.1%,2.8%,2.4%,and 2.1%.While the indoor and outdoor temperature difference varies from−5℃ to 49℃,the effect of stack effect on the pressure in the flue and the flow rate for each user was studied for six operating rates s.The results show that under the combined effect of stack effect and flue resistance,the static pressure of the kitchen smoke exhaust system showed a low-high-low distribution,and the maximum static pressure in the flue moved toward the bottom with the increase of temperature difference.User flow rates exhibit a low-high-low-high distribution,with an increased flow rate in the bottom users and the largest flow rate in the top users.展开更多
Space cooling is an important building energy end-use that was found in recent years to be significantly impacted by occupant behaviours.However,the majority of previous studies ignored the interplay between the opera...Space cooling is an important building energy end-use that was found in recent years to be significantly impacted by occupant behaviours.However,the majority of previous studies ignored the interplay between the operation of windows and air conditioners(ACs)on cooling load,particularly in building energy modelling.In addition,studies on the analysis of cooling load characteristics regarding high-rise buildings are insufficient.The vertical effect of high-rise buildings on cooling load remains vague.This study thus aims to examine how window and AC operation behaviours impact the cooling load of high-rise buildings in an urban context demonstrated by a real-life typical 40-floor residential building in Hong Kong.This study investigates window and AC operation behaviours jointly and examines the vertical effect on cooling load by using agent-based building energy modelling(BEM)techniques and initiating stochastic and diverse behaviour modes.A carefully designed questionnaire survey was conducted to help build behaviour modes and validate energy models.Ninety building energy models were established integrating meteorological parameters generated by the computational fluid dynamics(CFD)programme for ten typical floors and nine combinations of window and AC behaviour modes.The results show that comfort-based AC modes and schedule-based window modes yielded the lowest cooling load.Considering the combined effect of AC and window uses,the maximum difference in cooling loads could be 26.8%.Behaviour modes and building height induce up to 32.4%differences in cooling loads.Besides,a deviation between the behaviour modes and height on the cooling load was found.The findings will help develop a thorough energy model inferring occupants’window and AC behaviour modes along with the building height in high-rise residential buildings.The findings indicate that the interaction impact of window and AC behaviour modes and height should be jointly considered in future high-rise building energy modelling,building energy standards,and policymaking.展开更多
With the constant advance of global urbanization and aggravation of urban construction land scarcity,high-rise residential buildings have become one of the main carriers of urban residential function on account of bot...With the constant advance of global urbanization and aggravation of urban construction land scarcity,high-rise residential buildings have become one of the main carriers of urban residential function on account of both land saving and large housing requirement.However,relevant studies on consumers' floor selection preference in high-rise residential buildings,regarding what inherent and regular features and causes it has,are still insufficient,despite that related issues have important practical significance for real estate developers and designers' decision making in terms of dwelling size ratio,floor area,indoor layout,and so on.This study,based on systematic examination of existing domestic and international researches,seeks to make empirical tests and generalization on the above issues from the aspect of "utility function"(safety,comfortableness,accessibility and economic efficiency) of the living environment that impacted by different floor levels,and floor selection features regarding consumers' social and family structure attributes,as well as the intrinsic correlation between them.The results show the existence of floor level preference in high-rise residential buildings.Its essence is a personalized characterization of consumers' social and family structures' attributes in selecting the "utility function" of the living environment,as the preference value differs under various attributes including gender,age,income,family members and others.展开更多
Good natural ventilation is the basic function of residential buildings in hot summer and cold winter areas. The intensive use of urban land makes high-rise residential units adopt a large number of multi-household la...Good natural ventilation is the basic function of residential buildings in hot summer and cold winter areas. The intensive use of urban land makes high-rise residential units adopt a large number of multi-household layouts, and the middle households are often difficult to penetrate from north and south, and the natural ventilation effect is not good. The application of a utility model patent "building interlayer ventilation channel" can improve this situation. This paper mainly introduced the basic form and functional characteristics of the patent, and discussed its advantages in detail.展开更多
https://www.sciencedirect.com/journal/applied-energy/vol/253/suppl/C Volume 253,1 November 2019(1)Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement,by Cheng ...https://www.sciencedirect.com/journal/applied-energy/vol/253/suppl/C Volume 253,1 November 2019(1)Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement,by Cheng Wang,Ye Zhu,Xiaofeng Guo,Article 113506.Abstract:Optic-Variable Wall(OVW)using thermally responsive coating on the facades of high-rise residential buildings is assessed by dynamic simulation.展开更多
Understanding housing preferences is critical for successful compact city development.However,there is limited research on understanding preference heterogeneity in dwelling type choices.Using the Household Income and...Understanding housing preferences is critical for successful compact city development.However,there is limited research on understanding preference heterogeneity in dwelling type choices.Using the Household Income and Labour Dynamics in Australia survey,this paper identifies the key housing and built environment characteristics associated with changes in dwelling type choice from detached houses to high-density.A latent class choice model captures the heterogeneity of dwelling type preferences within a traditionally low-density city,Brisbane,Australia.Findings reveal six household classes with distinct dwelling preferences:Class 1(senior households without children with other family members)and Class 2(couple families with children)in inner-city areas,Class 3(high-income young households)and Class 4(low-income households without children)in middle-city areas,Class 5(low-income families with children)and Class 6(middle-income young families without children)in outer-city areas.Residential environments with better access to educational facilities encourage Classes 3 and 6 to change to high-density living.Greater land use diversity encourages Classes 2,3,and 6 to move towards high-density living.Thefindings can be used to design and improve high-density housing for targeted population groups across inner-,middle-and outer-city areas.展开更多
Central flues are now commonly adopted in high-rise residential buildings in China for cooking oil fumes(COF)exhaust.Range hoods of all floors are connected to the central shaft,where oil fumes were gathered and exhau...Central flues are now commonly adopted in high-rise residential buildings in China for cooking oil fumes(COF)exhaust.Range hoods of all floors are connected to the central shaft,where oil fumes were gathered and exhausted through the outlet at the building roof.As households may cook and use their range hood at random periods,there is great uncertainty of the amount of COF being exhausted.In addition,users can often adjust the exhaust rate of the range hood according to their needs.As a result,thousands of possible operating conditions consisting of distinct combinations of on/off conditions and fan speed occur randomly in the central COF exhaust system,causing the exhaust performance to vary considerably from condition to condition.This work developed a mathematical model for characterizing the operation of the central COF exhaust system in a high-rise residential building as well as its iterative solving method.Full-scale tests coupled with CFD simulation referring to a real 30-floor building were conducted to validate the proposed model.The results show that the model agreed well with the CFD and experimental data under various system operating conditions.Moreover,the Monte-Carlo method was introduced to simulate the random operating characteristics of the system,and a hundred thousand cases corresponding to distinct system operating conditions were sampled and statistically analyzed.展开更多
基金Supported by the National Natural Science Foundation of China(50778064)Hunan Natural Science Foundation(07jj6088)
文摘In this study a 10-storied residential building model was employed to clarify the ventilation characteristics of the atrium and the rooms,which were effected by the different forms of lateral openings.The experiment was conducted under the combined effect of wind force and thermal buoyancy,and the similarity requirements were satisfied.The results have shown that the different forms of lateral openings cause the different ventilation effect of the building,and also have some certain regularity.The conclusions provide a theoretical foundation for how to use the ventilation of atrium better in high-rise residential building.
文摘In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.
基金supported by National Natural Science Foundation of China (Grant No.52178082)Program for Liaoning Innovative Tal-ents in University (No.SHSCXRC2017003)Shenyang Science and technology planning project (No.21-108-9-03).
文摘In high-rise buildings with large indoor and outdoor temperature difference,neglecting the effect of stack effect in smoke exhaust shafts may cause calculation error of the fluid network model.In this paper,the mathematical model of kitchen smoke exhaust system considering the influence of stack effect was put forward and it can be inserted different range hood sub-models.Compared with the results of six working conditions of the model without considering the stack effect,the error of the proposed model were reduced by 7.6%,4.3%,4.1%,2.8%,2.4%,and 2.1%.While the indoor and outdoor temperature difference varies from−5℃ to 49℃,the effect of stack effect on the pressure in the flue and the flow rate for each user was studied for six operating rates s.The results show that under the combined effect of stack effect and flue resistance,the static pressure of the kitchen smoke exhaust system showed a low-high-low distribution,and the maximum static pressure in the flue moved toward the bottom with the increase of temperature difference.User flow rates exhibit a low-high-low-high distribution,with an increased flow rate in the bottom users and the largest flow rate in the top users.
基金supported by grants from the General Research Fund of the Hong Kong Research Grants Council[No.17203219]the Collaborative Research Fund of the Hong Kong Research Grants Council[No.C7047-20GF].
文摘Space cooling is an important building energy end-use that was found in recent years to be significantly impacted by occupant behaviours.However,the majority of previous studies ignored the interplay between the operation of windows and air conditioners(ACs)on cooling load,particularly in building energy modelling.In addition,studies on the analysis of cooling load characteristics regarding high-rise buildings are insufficient.The vertical effect of high-rise buildings on cooling load remains vague.This study thus aims to examine how window and AC operation behaviours impact the cooling load of high-rise buildings in an urban context demonstrated by a real-life typical 40-floor residential building in Hong Kong.This study investigates window and AC operation behaviours jointly and examines the vertical effect on cooling load by using agent-based building energy modelling(BEM)techniques and initiating stochastic and diverse behaviour modes.A carefully designed questionnaire survey was conducted to help build behaviour modes and validate energy models.Ninety building energy models were established integrating meteorological parameters generated by the computational fluid dynamics(CFD)programme for ten typical floors and nine combinations of window and AC behaviour modes.The results show that comfort-based AC modes and schedule-based window modes yielded the lowest cooling load.Considering the combined effect of AC and window uses,the maximum difference in cooling loads could be 26.8%.Behaviour modes and building height induce up to 32.4%differences in cooling loads.Besides,a deviation between the behaviour modes and height on the cooling load was found.The findings will help develop a thorough energy model inferring occupants’window and AC behaviour modes along with the building height in high-rise residential buildings.The findings indicate that the interaction impact of window and AC behaviour modes and height should be jointly considered in future high-rise building energy modelling,building energy standards,and policymaking.
基金supported by National Natural Science Foundation of China(41501173)Postdoctoral Science Foundation of China(2015M571418)Central University Basic Research and Operating Expenses of Special Funding(HIT.NSRIF.201656)
文摘With the constant advance of global urbanization and aggravation of urban construction land scarcity,high-rise residential buildings have become one of the main carriers of urban residential function on account of both land saving and large housing requirement.However,relevant studies on consumers' floor selection preference in high-rise residential buildings,regarding what inherent and regular features and causes it has,are still insufficient,despite that related issues have important practical significance for real estate developers and designers' decision making in terms of dwelling size ratio,floor area,indoor layout,and so on.This study,based on systematic examination of existing domestic and international researches,seeks to make empirical tests and generalization on the above issues from the aspect of "utility function"(safety,comfortableness,accessibility and economic efficiency) of the living environment that impacted by different floor levels,and floor selection features regarding consumers' social and family structure attributes,as well as the intrinsic correlation between them.The results show the existence of floor level preference in high-rise residential buildings.Its essence is a personalized characterization of consumers' social and family structures' attributes in selecting the "utility function" of the living environment,as the preference value differs under various attributes including gender,age,income,family members and others.
文摘Good natural ventilation is the basic function of residential buildings in hot summer and cold winter areas. The intensive use of urban land makes high-rise residential units adopt a large number of multi-household layouts, and the middle households are often difficult to penetrate from north and south, and the natural ventilation effect is not good. The application of a utility model patent "building interlayer ventilation channel" can improve this situation. This paper mainly introduced the basic form and functional characteristics of the patent, and discussed its advantages in detail.
文摘https://www.sciencedirect.com/journal/applied-energy/vol/253/suppl/C Volume 253,1 November 2019(1)Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement,by Cheng Wang,Ye Zhu,Xiaofeng Guo,Article 113506.Abstract:Optic-Variable Wall(OVW)using thermally responsive coating on the facades of high-rise residential buildings is assessed by dynamic simulation.
文摘Understanding housing preferences is critical for successful compact city development.However,there is limited research on understanding preference heterogeneity in dwelling type choices.Using the Household Income and Labour Dynamics in Australia survey,this paper identifies the key housing and built environment characteristics associated with changes in dwelling type choice from detached houses to high-density.A latent class choice model captures the heterogeneity of dwelling type preferences within a traditionally low-density city,Brisbane,Australia.Findings reveal six household classes with distinct dwelling preferences:Class 1(senior households without children with other family members)and Class 2(couple families with children)in inner-city areas,Class 3(high-income young households)and Class 4(low-income households without children)in middle-city areas,Class 5(low-income families with children)and Class 6(middle-income young families without children)in outer-city areas.Residential environments with better access to educational facilities encourage Classes 3 and 6 to change to high-density living.Greater land use diversity encourages Classes 2,3,and 6 to move towards high-density living.Thefindings can be used to design and improve high-density housing for targeted population groups across inner-,middle-and outer-city areas.
基金supported by the China National Key R&D Program during the 13th Five-year Plan Period(grant No.2018YFC0705300)the National Natural Science Foundation of China under grant No.51578387 and No.51778440Support from China Postdoctoral Science Foundation(grant No.2020M681391)in this study is also gratefully acknowledged.
文摘Central flues are now commonly adopted in high-rise residential buildings in China for cooking oil fumes(COF)exhaust.Range hoods of all floors are connected to the central shaft,where oil fumes were gathered and exhausted through the outlet at the building roof.As households may cook and use their range hood at random periods,there is great uncertainty of the amount of COF being exhausted.In addition,users can often adjust the exhaust rate of the range hood according to their needs.As a result,thousands of possible operating conditions consisting of distinct combinations of on/off conditions and fan speed occur randomly in the central COF exhaust system,causing the exhaust performance to vary considerably from condition to condition.This work developed a mathematical model for characterizing the operation of the central COF exhaust system in a high-rise residential building as well as its iterative solving method.Full-scale tests coupled with CFD simulation referring to a real 30-floor building were conducted to validate the proposed model.The results show that the model agreed well with the CFD and experimental data under various system operating conditions.Moreover,the Monte-Carlo method was introduced to simulate the random operating characteristics of the system,and a hundred thousand cases corresponding to distinct system operating conditions were sampled and statistically analyzed.