In this paper. we study the average n-K width of the convolution class B_(pq)(G)(or B_(?)(G)), for which the kernel G(x) is a PF density, in the metric L_q(R)(or L_(qp)(R)) for the case 1≤q<p ≤∞, and obtain some...In this paper. we study the average n-K width of the convolution class B_(pq)(G)(or B_(?)(G)), for which the kernel G(x) is a PF density, in the metric L_q(R)(or L_(qp)(R)) for the case 1≤q<p ≤∞, and obtain some exact results.展开更多
In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by us...In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by using the Modulus of continuity and Lipschitz class, the statistical rate of convergence is established. We also gives the rate of A-statistical convergence by means of Peetre's type K-functional. At last, approximation properties of a rth order generalization of these operators is discussed.展开更多
In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term ...In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term of the problem involved also possesses singularities at the nodes. As an application, certain singular integral equation is discussed.展开更多
In this paper, Lyapunov-like exponential stability and unstability of differentialalgebraic equation are considered from the viewpoint of stability of system motion, and the criteria of exponential stability and unsta...In this paper, Lyapunov-like exponential stability and unstability of differentialalgebraic equation are considered from the viewpoint of stability of system motion, and the criteria of exponential stability and unstability of nonlinear nonautonomous differential-algebraic equation are given by using Lyapunov-like function similar to ordinary differential equation.展开更多
基金The author was supported by the National Natural Science Found of China.
文摘In this paper. we study the average n-K width of the convolution class B_(pq)(G)(or B_(?)(G)), for which the kernel G(x) is a PF density, in the metric L_q(R)(or L_(qp)(R)) for the case 1≤q<p ≤∞, and obtain some exact results.
文摘In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by using the Modulus of continuity and Lipschitz class, the statistical rate of convergence is established. We also gives the rate of A-statistical convergence by means of Peetre's type K-functional. At last, approximation properties of a rth order generalization of these operators is discussed.
文摘In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term of the problem involved also possesses singularities at the nodes. As an application, certain singular integral equation is discussed.
文摘In this paper, Lyapunov-like exponential stability and unstability of differentialalgebraic equation are considered from the viewpoint of stability of system motion, and the criteria of exponential stability and unstability of nonlinear nonautonomous differential-algebraic equation are given by using Lyapunov-like function similar to ordinary differential equation.