Having researched for many years, seismologists in China presented about 80 earthquake prediction factors which reflected omen information of earthquake. How to concentrate the information that the 80 earthquake predi...Having researched for many years, seismologists in China presented about 80 earthquake prediction factors which reflected omen information of earthquake. How to concentrate the information that the 80 earthquake prediction factors have and how to choose the main factors to predict earthquakes precisely have become one of the topics in seismology. The model of principal component-discrimination consists of principal component analysis, correlation analysis, weighted method of principal factor coefficients and Mahalanobis distance discrimination analysis. This model combines the method of maximization earthquake prediction factor information with the weighted method of principal factor coefficients and correlation analysis to choose earthquake prediction variables, applying Mahalanobis distance discrimination to establishing earthquake prediction discrimination model. This model was applied to analyzing the earthquake data of Northern China area and obtained good prediction results.展开更多
In this study the principal component analysis (PCA) and geographically weighted regression (GWR) are combined to estimate the spatial distribution of water requirement of the winter wheat in North China while the eff...In this study the principal component analysis (PCA) and geographically weighted regression (GWR) are combined to estimate the spatial distribution of water requirement of the winter wheat in North China while the effect of the macroand micro-topographic as well as the meteorological factors on the crop water requirement is taking into account. The spatial distribution characteristic of the water requirement of the winter wheat in North China and its formation are analyzed based on the spatial variation of the main affecting factors and the regression coefficients. The findings reveal that the collinearity can be effectively removed when PCA is applied to process all of the affecting factors. The regression coefficients of GWR displayed a strong variability in space, which can better explain the spatial differences of the effect of the affecting factors on the crop water requirement. The evaluation index of the proposed method in this study is more efficient than the widely used Kriging method. Besides, it could clearly show the effect of those affecting factors in different spatial locations on the crop water requirement and provide more detailed information on the region where those factors suddenly change. To sum up, it is of great reference significance for the estimation of the regional crop water requirement.展开更多
Investigation of genetic diversity of geographically distant wheat genotypes is </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">useful ...Investigation of genetic diversity of geographically distant wheat genotypes is </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">useful approach in wheat breeding providing efficient crop varieties. This article presents multivariate cluster and principal component analyses (PCA) of some yield traits of wheat, such as thousand-kernel weight (TKW), grain number, grain yield and plant height. Based on the results, an evaluation of economically valuable attributes by eigenvalues made it possible to determine the components that significantly contribute to the yield of common wheat genotypes. Twenty-five genotypes were grouped into four clusters on the basis of average linkage. The PCA showed four principal components (PC) with eigenvalues ></span><span style="font-family:""> </span><span style="font-family:Verdana;">1, explaining approximately 90.8% of the total variability. According to PC analysis, the variance in the eigenvalues was </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">greatest (4.33) for PC-1, PC-2 (1.86) and PC-3 (1.01). The cluster analysis revealed the classification of 25 accessions into four diverse groups. Averages, standard deviations and variances for clusters based on morpho-physiological traits showed that the maximum average values for grain yield (742.2), biomass (1756.7), grains square meter (18</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;">373.7), and grains per spike (45.3) were higher in cluster C compared to other clusters. Cluster D exhibited the maximum thousand-kernel weight (TKW) (46.6).展开更多
The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of t...The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of the multi-block statistical method known as common components and specific weights analysis.The three methods were applied to a set of data to show the differences and similarities of the results obtained,highlighting their complementarity.展开更多
Water borne ailments are of serious public health concern in Gilgit Baltistan’s (GB) region of Pakistan. The pollution load on the glacio-fluvial streams and surface water resources of the Chapurson Valley in the Hun...Water borne ailments are of serious public health concern in Gilgit Baltistan’s (GB) region of Pakistan. The pollution load on the glacio-fluvial streams and surface water resources of the Chapurson Valley in the Hunza Nagar area of the GB is increasing as a result of anthropogenic activities and tourism. The present study focuses on the public health quality of drinking water of Chapurson valley. The study addressed the fundamental drinking water quality criteria in order to understand the state of the public health in the valley. To ascertain the current status of physico-chemical, metals, and bacteriological parameters, 25 water samples were collected through deterministic sampling strategy and examined accordingly. The physico-chemical parameters of the water samples collected from the valley were found to meet the World Health Organization (WHO) guidelines of drinking water. The water samples showed a pattern of mean metal concentrations in order of Arsenic (As) > Lead (Pb) > Iron (Fe) > Zinc (Zn) > Copper (Cu) > Magnesium (Mg) > Calcium (Ca). As, Cu, Zn, Ca and Mg concentration were under the WHO guidelines range. However, results showed that Pb and Fe are present at much higher concentrations than recommended WHO guidelines. Similarly, the results of the bacteriological analysis indicate that the water samples are heavily contaminated with the organisms of public health importance (including total coliforms (TCC), total faecal coliforms (TFC) and total fecal streptococci (TFS) are more than 3 MPN/100mL). Three principal components, accounting for 48.44% of the total variance, were revealed using principal component analysis (PCA). Bacteriological parameters were shown to be the main determinants of the water quality as depicted by the PCA analysis. The dendrogram of Cluster analysis using the Ward’s method validated the same traits of the sampling locations that were found to be contaminated during geospatial analysis using the Inverse Distance Weight (IDW) method. Based on these findings, it is most likely that those anthropogenic activities and essentially the tourism results in pollution load from upstream channels. Metals may be released into surface and groundwater from a few underlying sources as a result of weathering and erosion. This study suggests that the valley water resources are more susceptible to bacteriological contamination and as such no water treatment facilities or protective measure have been taken to encounter the pollution load. People are drinking the contaminated water without questioning about the quality. It is recommended that the water resources of the valley should be monitored using standard protocol so as to protect not only the public health but to safe guard sustainable tourism in the valley.展开更多
In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be direc...In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms.展开更多
文摘Having researched for many years, seismologists in China presented about 80 earthquake prediction factors which reflected omen information of earthquake. How to concentrate the information that the 80 earthquake prediction factors have and how to choose the main factors to predict earthquakes precisely have become one of the topics in seismology. The model of principal component-discrimination consists of principal component analysis, correlation analysis, weighted method of principal factor coefficients and Mahalanobis distance discrimination analysis. This model combines the method of maximization earthquake prediction factor information with the weighted method of principal factor coefficients and correlation analysis to choose earthquake prediction variables, applying Mahalanobis distance discrimination to establishing earthquake prediction discrimination model. This model was applied to analyzing the earthquake data of Northern China area and obtained good prediction results.
基金supported by the National Basic Research Program of China (2006CB403406)the National Natural Science Foundation of China(51079154)the National HighTech Research & Development Program of China (2011AA100502)
文摘In this study the principal component analysis (PCA) and geographically weighted regression (GWR) are combined to estimate the spatial distribution of water requirement of the winter wheat in North China while the effect of the macroand micro-topographic as well as the meteorological factors on the crop water requirement is taking into account. The spatial distribution characteristic of the water requirement of the winter wheat in North China and its formation are analyzed based on the spatial variation of the main affecting factors and the regression coefficients. The findings reveal that the collinearity can be effectively removed when PCA is applied to process all of the affecting factors. The regression coefficients of GWR displayed a strong variability in space, which can better explain the spatial differences of the effect of the affecting factors on the crop water requirement. The evaluation index of the proposed method in this study is more efficient than the widely used Kriging method. Besides, it could clearly show the effect of those affecting factors in different spatial locations on the crop water requirement and provide more detailed information on the region where those factors suddenly change. To sum up, it is of great reference significance for the estimation of the regional crop water requirement.
文摘Investigation of genetic diversity of geographically distant wheat genotypes is </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">useful approach in wheat breeding providing efficient crop varieties. This article presents multivariate cluster and principal component analyses (PCA) of some yield traits of wheat, such as thousand-kernel weight (TKW), grain number, grain yield and plant height. Based on the results, an evaluation of economically valuable attributes by eigenvalues made it possible to determine the components that significantly contribute to the yield of common wheat genotypes. Twenty-five genotypes were grouped into four clusters on the basis of average linkage. The PCA showed four principal components (PC) with eigenvalues ></span><span style="font-family:""> </span><span style="font-family:Verdana;">1, explaining approximately 90.8% of the total variability. According to PC analysis, the variance in the eigenvalues was </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">greatest (4.33) for PC-1, PC-2 (1.86) and PC-3 (1.01). The cluster analysis revealed the classification of 25 accessions into four diverse groups. Averages, standard deviations and variances for clusters based on morpho-physiological traits showed that the maximum average values for grain yield (742.2), biomass (1756.7), grains square meter (18</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;">373.7), and grains per spike (45.3) were higher in cluster C compared to other clusters. Cluster D exhibited the maximum thousand-kernel weight (TKW) (46.6).
基金the water saving project funding of Ministry of Water Resources of P.R.China(code:200970)the research funding of North China University of Water Conservancy and Electric Power of 2006+1 种基金the project of Henan Excellent Teacher Funding of 2006,Henan Science and Technology project(092102310197)Henan natural science research project of Education Department(2009A170004)
文摘The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of the multi-block statistical method known as common components and specific weights analysis.The three methods were applied to a set of data to show the differences and similarities of the results obtained,highlighting their complementarity.
文摘Water borne ailments are of serious public health concern in Gilgit Baltistan’s (GB) region of Pakistan. The pollution load on the glacio-fluvial streams and surface water resources of the Chapurson Valley in the Hunza Nagar area of the GB is increasing as a result of anthropogenic activities and tourism. The present study focuses on the public health quality of drinking water of Chapurson valley. The study addressed the fundamental drinking water quality criteria in order to understand the state of the public health in the valley. To ascertain the current status of physico-chemical, metals, and bacteriological parameters, 25 water samples were collected through deterministic sampling strategy and examined accordingly. The physico-chemical parameters of the water samples collected from the valley were found to meet the World Health Organization (WHO) guidelines of drinking water. The water samples showed a pattern of mean metal concentrations in order of Arsenic (As) > Lead (Pb) > Iron (Fe) > Zinc (Zn) > Copper (Cu) > Magnesium (Mg) > Calcium (Ca). As, Cu, Zn, Ca and Mg concentration were under the WHO guidelines range. However, results showed that Pb and Fe are present at much higher concentrations than recommended WHO guidelines. Similarly, the results of the bacteriological analysis indicate that the water samples are heavily contaminated with the organisms of public health importance (including total coliforms (TCC), total faecal coliforms (TFC) and total fecal streptococci (TFS) are more than 3 MPN/100mL). Three principal components, accounting for 48.44% of the total variance, were revealed using principal component analysis (PCA). Bacteriological parameters were shown to be the main determinants of the water quality as depicted by the PCA analysis. The dendrogram of Cluster analysis using the Ward’s method validated the same traits of the sampling locations that were found to be contaminated during geospatial analysis using the Inverse Distance Weight (IDW) method. Based on these findings, it is most likely that those anthropogenic activities and essentially the tourism results in pollution load from upstream channels. Metals may be released into surface and groundwater from a few underlying sources as a result of weathering and erosion. This study suggests that the valley water resources are more susceptible to bacteriological contamination and as such no water treatment facilities or protective measure have been taken to encounter the pollution load. People are drinking the contaminated water without questioning about the quality. It is recommended that the water resources of the valley should be monitored using standard protocol so as to protect not only the public health but to safe guard sustainable tourism in the valley.
文摘In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms.