A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing,bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied...A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing,bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied.In this research, using a progressive Type-II censored, various inferences of the MOL model parameters oflife are introduced. Utilizing the maximum likelihood method as a classical approach, the estimators of themodel parameters and various reliability measures are investigated. Against both symmetric and asymmetric lossfunctions, the Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) technique with theassumption of independent gamma priors. From the Fisher information data and the simulatedMarkovian chains,the approximate asymptotic interval and the highest posterior density interval, respectively, of each unknownparameter are calculated. Via an extensive simulated study, the usefulness of the various suggested strategies isassessedwith respect to some evaluationmetrics such as mean squared errors, mean relative absolute biases, averageconfidence lengths, and coverage percentages. Comparing the Bayesian estimations based on the asymmetric lossfunction to the traditional technique or the symmetric loss function-based Bayesian estimations, the analysisdemonstrates that asymmetric loss function-based Bayesian estimations are preferred. Finally, two data sets,representing vinyl chloride and repairable mechanical equipment items, have been investigated to support theapproaches proposed and show the superiority of the proposed model compared to the other fourteen lifetimemodels.展开更多
文摘A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing,bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied.In this research, using a progressive Type-II censored, various inferences of the MOL model parameters oflife are introduced. Utilizing the maximum likelihood method as a classical approach, the estimators of themodel parameters and various reliability measures are investigated. Against both symmetric and asymmetric lossfunctions, the Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) technique with theassumption of independent gamma priors. From the Fisher information data and the simulatedMarkovian chains,the approximate asymptotic interval and the highest posterior density interval, respectively, of each unknownparameter are calculated. Via an extensive simulated study, the usefulness of the various suggested strategies isassessedwith respect to some evaluationmetrics such as mean squared errors, mean relative absolute biases, averageconfidence lengths, and coverage percentages. Comparing the Bayesian estimations based on the asymmetric lossfunction to the traditional technique or the symmetric loss function-based Bayesian estimations, the analysisdemonstrates that asymmetric loss function-based Bayesian estimations are preferred. Finally, two data sets,representing vinyl chloride and repairable mechanical equipment items, have been investigated to support theapproaches proposed and show the superiority of the proposed model compared to the other fourteen lifetimemodels.