Background/Objectives:Many economies are on the trajectory of alternative growth drivers other than conventional capital and labor.Access to credit facilities is a pertinent indicator of economic growth.In line with t...Background/Objectives:Many economies are on the trajectory of alternative growth drivers other than conventional capital and labor.Access to credit facilities is a pertinent indicator of economic growth.In line with the United Nations Sustainable Development Goals(UNSDGs-8)agenda,the national goal for sustainable development for most economies and Arab economies is no exception.Therefore,the current study adopts a traditional growth model by exploring the relationship between gross domestic product(GDP)per capita,credit for private sectors,ratio of exports,real GDP,and per labor force participants for selected Arab economies annually from 2001 to 2020.Research design:This study leverages the Fourier Kwiatkowski–Phillips–Schmidt–Shin(KPSS)unit root test and second-generation panel econometrics as estimation techniques,such as Westerlund and Edgerton panel cointegration test,and the use of two estimators,namely the augmented mean group(AMG)and common correlated error mean group(CCEMG),to obtain robust results.Findings:Empirical findings from Westerlund and Edgerton panel cointegration tests validate the long-run equilibrium relationship among the outlined variables.Further empirical results indicate that the share of exports is negatively significant with economic growth in countries such as Kuwait,Lebanon,Tunisia,and Jordan.Additionally,savings and labor force participation have a positive relationship with economic growth in individual countries such as Algeria and Bahrain.As per the panel,there is no significant relationship between labor force participation and economic growth.This indicates that the skilled labor force enhanced economic growth.Conclusions:These findings come with inherent far-reaching policy suggestions for economies and panels.Further details on country-specific policy actions are presented in the concluding section.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowe...In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.展开更多
Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop q...Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.展开更多
Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated ...Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center.展开更多
A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. ...A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius.展开更多
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these re...This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.展开更多
Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than...Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than numerical weather models.The core concept involves the spatio-temporal extrapolation of current precipitation fields derived from ground radar echoes and/or satellite images,which was generally actualized by employing computer image or vision techniques.Recently,with stirring breakthroughs in artificial intelligence(AI)techniques,deep learning(DL)methods have been used as the basis for developing novel approaches to precipitation nowcasting.Notable progress has been obtained in recent years,manifesting the strong potential of DL-based nowcasting models for their advantages in both prediction accuracy and computational cost.This paper provides an overview of these precipitation nowcasting approaches,from which two stages along the advancing in this field emerge.Classic models that were established on an elementary neural network dominated in the first stage,while large meteorological models that were based on complex network architectures prevailed in the second.In particular,the nowcasting accuracy of such data-driven models has been greatly increased by imposing suitable physical constraints.The integration of AI models and physical models seems to be a promising way to improve precipitation nowcasting techniques further.展开更多
Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived ...Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived using the conservation and balance laws of continuum mechanics in conjunction with the corresponding kinematic assumptions. This is referred to as thermodynamic consistency of the mathematical models. Thermodynamic consistency ensures thermodynamic equilibrium during the evolution of the deformation. When the mathematical models are thermodynamically consistent, the second law of thermodynamics facilitates consistent derivations of constitutive theories in the presence of dissipation and memory mechanisms. This is the main motivation for the work presented in this paper. In the currently used mathematical models for plates/shells based on the assumed kinematic relations, energy functional is constructed over the volume consisting of kinetic energy, strain energy and the potential energy of the loads. The Euler’s equations derived from the first variation of the energy functional for arbitrary length when set to zero yield the mathematical model(s) for the deforming plates/shells. Alternatively, principle of virtual work can also be used to derive the same mathematical model(s). For linear elastic reversible deformation physics with small deformation and small strain, these two approaches, based on energy functional and the principle of virtual work, yield the same mathematical models. These mathematical models hold for reversible mechanical deformation. In this paper, we examine whether the currently used plate/shell mathematical models with the corresponding kinematic assumptions can be derived using the conservation and balance laws of classical or non-classical continuum mechanics. The mathematical models based on Kirchhoff hypothesis (classical plate theory, CPT) and first order shear deformation theory (FSDT) that are representative of most mathematical models for plates/shells are investigated in this paper for their thermodynamic consistency. This is followed by the details of a general and higher order thermodynamically consistent plate/shell thermoelastic mathematical model that is free of a priori consideration of kinematic assumptions and remains valid for very thin as well as thick plates/shells with comprehensive nonlinear constitutive theories based on integrity. Model problem studies are presented for small deformation behavior of linear elastic plates in the absence of thermal effects and the results are compared with CPT and FSDT mathematical models.展开更多
文摘Background/Objectives:Many economies are on the trajectory of alternative growth drivers other than conventional capital and labor.Access to credit facilities is a pertinent indicator of economic growth.In line with the United Nations Sustainable Development Goals(UNSDGs-8)agenda,the national goal for sustainable development for most economies and Arab economies is no exception.Therefore,the current study adopts a traditional growth model by exploring the relationship between gross domestic product(GDP)per capita,credit for private sectors,ratio of exports,real GDP,and per labor force participants for selected Arab economies annually from 2001 to 2020.Research design:This study leverages the Fourier Kwiatkowski–Phillips–Schmidt–Shin(KPSS)unit root test and second-generation panel econometrics as estimation techniques,such as Westerlund and Edgerton panel cointegration test,and the use of two estimators,namely the augmented mean group(AMG)and common correlated error mean group(CCEMG),to obtain robust results.Findings:Empirical findings from Westerlund and Edgerton panel cointegration tests validate the long-run equilibrium relationship among the outlined variables.Further empirical results indicate that the share of exports is negatively significant with economic growth in countries such as Kuwait,Lebanon,Tunisia,and Jordan.Additionally,savings and labor force participation have a positive relationship with economic growth in individual countries such as Algeria and Bahrain.As per the panel,there is no significant relationship between labor force participation and economic growth.This indicates that the skilled labor force enhanced economic growth.Conclusions:These findings come with inherent far-reaching policy suggestions for economies and panels.Further details on country-specific policy actions are presented in the concluding section.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金Supported by the National Natural Science Foundation of China(11171340)
文摘In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.
基金Supported by the Algerian Ministry of Education and ResearchDGRSDT
文摘Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.
文摘Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center.
文摘A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius.
文摘This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.
基金National Natural Science Foundation of China(42075075)National Key R&D Program of China(2023YFC3007700)Pre-Research Fund of USTC(YZ2082300006)。
文摘Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than numerical weather models.The core concept involves the spatio-temporal extrapolation of current precipitation fields derived from ground radar echoes and/or satellite images,which was generally actualized by employing computer image or vision techniques.Recently,with stirring breakthroughs in artificial intelligence(AI)techniques,deep learning(DL)methods have been used as the basis for developing novel approaches to precipitation nowcasting.Notable progress has been obtained in recent years,manifesting the strong potential of DL-based nowcasting models for their advantages in both prediction accuracy and computational cost.This paper provides an overview of these precipitation nowcasting approaches,from which two stages along the advancing in this field emerge.Classic models that were established on an elementary neural network dominated in the first stage,while large meteorological models that were based on complex network architectures prevailed in the second.In particular,the nowcasting accuracy of such data-driven models has been greatly increased by imposing suitable physical constraints.The integration of AI models and physical models seems to be a promising way to improve precipitation nowcasting techniques further.
文摘Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived using the conservation and balance laws of continuum mechanics in conjunction with the corresponding kinematic assumptions. This is referred to as thermodynamic consistency of the mathematical models. Thermodynamic consistency ensures thermodynamic equilibrium during the evolution of the deformation. When the mathematical models are thermodynamically consistent, the second law of thermodynamics facilitates consistent derivations of constitutive theories in the presence of dissipation and memory mechanisms. This is the main motivation for the work presented in this paper. In the currently used mathematical models for plates/shells based on the assumed kinematic relations, energy functional is constructed over the volume consisting of kinetic energy, strain energy and the potential energy of the loads. The Euler’s equations derived from the first variation of the energy functional for arbitrary length when set to zero yield the mathematical model(s) for the deforming plates/shells. Alternatively, principle of virtual work can also be used to derive the same mathematical model(s). For linear elastic reversible deformation physics with small deformation and small strain, these two approaches, based on energy functional and the principle of virtual work, yield the same mathematical models. These mathematical models hold for reversible mechanical deformation. In this paper, we examine whether the currently used plate/shell mathematical models with the corresponding kinematic assumptions can be derived using the conservation and balance laws of classical or non-classical continuum mechanics. The mathematical models based on Kirchhoff hypothesis (classical plate theory, CPT) and first order shear deformation theory (FSDT) that are representative of most mathematical models for plates/shells are investigated in this paper for their thermodynamic consistency. This is followed by the details of a general and higher order thermodynamically consistent plate/shell thermoelastic mathematical model that is free of a priori consideration of kinematic assumptions and remains valid for very thin as well as thick plates/shells with comprehensive nonlinear constitutive theories based on integrity. Model problem studies are presented for small deformation behavior of linear elastic plates in the absence of thermal effects and the results are compared with CPT and FSDT mathematical models.