In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is disc...In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.展开更多
This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and th...This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results.展开更多
Lie symmetry of Maggi equations is studied. Its determining equation and restriction equation of nonholonomic constraint are given. A Hojman conserved quantity can be deduced directly by using the Lie symmetry. An exa...Lie symmetry of Maggi equations is studied. Its determining equation and restriction equation of nonholonomic constraint are given. A Hojman conserved quantity can be deduced directly by using the Lie symmetry. An example is given to illustrate the application of the result.展开更多
In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the syste...In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The condition for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.展开更多
In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the sys...In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.展开更多
This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equati...This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.展开更多
In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general in...In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.展开更多
This paper studies two new types of conserved quantities deduced by Noether Mei symmetry of mechanical system in phase space. The definition and criterion of Noether Mei symmetry for the system are given. A coordinati...This paper studies two new types of conserved quantities deduced by Noether Mei symmetry of mechanical system in phase space. The definition and criterion of Noether Mei symmetry for the system are given. A coordination function is introduced, and the conditions under which the Noether- Mei symmetry leads to the two types of conserved quantities and the forms of the two types of conserved quantities are obtained. An illustrative example is given. The coordination function can be selected according to the demand for finding the gauge function, and the choice of the coordination function has multiformity, so more conserved quantities deduced from Noether Mei symmetry of mechanical system can be obtained.展开更多
Two new types of conserved quantities deduced by Noether-Mei symmetry of nonholonomic mechanicalsystem are studied.The definition and criterion of Noether-Mei symmetry for the system are given.A coordinationfunction i...Two new types of conserved quantities deduced by Noether-Mei symmetry of nonholonomic mechanicalsystem are studied.The definition and criterion of Noether-Mei symmetry for the system are given.A coordinationfunction is introduced,and the conditions under which the Noether-Mei symmetry leads to the two types of conservedquantities and the forms of the two types of conserved quantities are obtained.An illustrative example is given.Thecoordination function can be selected according to the demand for finding the gauge function,and the choice of thecoordination function has multiformity,so more conserved quantities deduced from Noether-Mei symmetry of mechanicalsystem can be obtained.展开更多
In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining ...In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining equation of Lie symmetry of the system is established. The theorem of the Lie symmetrical Hojman conserved quantity of the system is presented. The above results are generalization to Hojman's conclusions, in which the time parameter is not variable and the system is non-relativistic. An example is given to illustrate the application of the results in the last.展开更多
In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noet...In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.展开更多
Two new types of conserved quantities directly deduced by Mei symmetry of holonomic mechanical system are studied. The definition and criterion of Mei symmetry for holonomic system are given. A coordination function i...Two new types of conserved quantities directly deduced by Mei symmetry of holonomic mechanical system are studied. The definition and criterion of Mei symmetry for holonomic system are given. A coordination function is introduced, the conditions under which the Mei symmetry can directly lead to the two types of conserved quantities and the forms of the two types of conserved quantities are obtained. An illustrative example is given. The result indicates that the coordination function can be selected properly according to the demand of the gauge function, thereby the gauge function can be found out more easily. Furthermore, since the choice of the coordination function has multiformity, much T more conserved quantity of Mei symmetry for holonomic mechanical system can be obtained.展开更多
In this paper, a new kind of symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i.e. a Noether-Lie symmetry, is presented, and the criterion o...In this paper, a new kind of symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i.e. a Noether-Lie symmetry, is presented, and the criterion of this symmetry is also given. The Noether conserved quantity and the generalized Hojman conserved quantity of the Noether Lie symmetry of the system are obtained. The Noether-Lie symmetry contains the Noether symmetry and the Lie symmetry, and has more generalized significance.展开更多
The new types of conserved quantities, which are directly induced by Lie symmetry of nonholonomie mechanical systems in phase space, are studied. Firstly, the criterion of the weak Lie symmetry and the strong Lie symm...The new types of conserved quantities, which are directly induced by Lie symmetry of nonholonomie mechanical systems in phase space, are studied. Firstly, the criterion of the weak Lie symmetry and the strong Lie symmetry are given. Secondly, the conditions of existence of the new type of conserved quantities induced by the weak Lie symmetry and the strong Lie symmetry directly are obtained, and their form is presented. Finaily, an Appell-Hamel example is discussed to further illustrate the applications of the results.展开更多
In this paper, a new symmetry and its conserved quantities of a mechanical system in phase space are studied. The defition of this new symmetry, i.e., a unified one is presented, and the criterion of this symmetry is ...In this paper, a new symmetry and its conserved quantities of a mechanical system in phase space are studied. The defition of this new symmetry, i.e., a unified one is presented, and the criterion of this symmetry is also given. The Noether, the generalized Hojman and the Mei conserved quantities of the unified symmetry of the system are obtained. The unified symmetry contains the Noether, the Lie and the Mei symmetries, and has more generalized significance.展开更多
For a nonholonomic mechanical system, the generalized Mei conserved quantity and the new generalized Hojman conserved quantity deduced from Noether symmetry of the system are studied. The criterion equation of the Noe...For a nonholonomic mechanical system, the generalized Mei conserved quantity and the new generalized Hojman conserved quantity deduced from Noether symmetry of the system are studied. The criterion equation of the Noether symmetry for the system is got. The conditions under which the Noether symmetry can lead to the two new conserved quantities are presented and the forms of the conserved quantities are obtained. Finally, an example is given to illustrate the application of the results.展开更多
The Noether symmetry, the Lie symmetry and the conserved quantity of discrete holonomic systems with dependent coordinates are investigated in this paper. The Noether symmetry provides a discrete Noether identity and ...The Noether symmetry, the Lie symmetry and the conserved quantity of discrete holonomic systems with dependent coordinates are investigated in this paper. The Noether symmetry provides a discrete Noether identity and a conserved quantity of the system. The invariance of discrete motion equations under infinitesimal transformation groups is defined as the Lie symmetry, and the condition of obtaining the Noether conserved quantity from the Lie symmetry is also presented. An example is discussed to show the applications of the results.展开更多
The Mei symmetry and conserved quantity of general discrete holonomic system are investigated in thispaper.The requirement for an invariant formalism of discrete motion equations is defined to be Mei symmetry.Thecrite...The Mei symmetry and conserved quantity of general discrete holonomic system are investigated in thispaper.The requirement for an invariant formalism of discrete motion equations is defined to be Mei symmetry.Thecriterion when a conserved quantity may be obtained from Mei symmetry is also deduced.An example is discussed forapplications of the results.展开更多
Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new con...Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are also obtained, An example is given to illustrate the application of the results.展开更多
In this paper, a new kind of symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i,e., a Noether-Mei symmetry, is presented, and the criterion ...In this paper, a new kind of symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i,e., a Noether-Mei symmetry, is presented, and the criterion of this symmetry is also given. The Noether conserved quantity and the Mei conserved quantity deduced from the Noether-Mei symmetry of the system are obtained. Finally, two examples are given to illustrate the Bpplication of the results.展开更多
文摘In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results.
基金Sponsored by the National Natural Science Foundation of China(10572021)
文摘Lie symmetry of Maggi equations is studied. Its determining equation and restriction equation of nonholonomic constraint are given. A Hojman conserved quantity can be deduced directly by using the Lie symmetry. An example is given to illustrate the application of the result.
文摘In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The condition for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.
文摘In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.
文摘In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.
文摘This paper studies two new types of conserved quantities deduced by Noether Mei symmetry of mechanical system in phase space. The definition and criterion of Noether Mei symmetry for the system are given. A coordination function is introduced, and the conditions under which the Noether- Mei symmetry leads to the two types of conserved quantities and the forms of the two types of conserved quantities are obtained. An illustrative example is given. The coordination function can be selected according to the demand for finding the gauge function, and the choice of the coordination function has multiformity, so more conserved quantities deduced from Noether Mei symmetry of mechanical system can be obtained.
文摘Two new types of conserved quantities deduced by Noether-Mei symmetry of nonholonomic mechanicalsystem are studied.The definition and criterion of Noether-Mei symmetry for the system are given.A coordinationfunction is introduced,and the conditions under which the Noether-Mei symmetry leads to the two types of conservedquantities and the forms of the two types of conserved quantities are obtained.An illustrative example is given.Thecoordination function can be selected according to the demand for finding the gauge function,and the choice of thecoordination function has multiformity,so more conserved quantities deduced from Noether-Mei symmetry of mechanicalsystem can be obtained.
文摘In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining equation of Lie symmetry of the system is established. The theorem of the Lie symmetrical Hojman conserved quantity of the system is presented. The above results are generalization to Hojman's conclusions, in which the time parameter is not variable and the system is non-relativistic. An example is given to illustrate the application of the results in the last.
基金National Natural Science Foundation of China under Grant No.10272034the Doctoral Program Foundation of China
文摘In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.
文摘Two new types of conserved quantities directly deduced by Mei symmetry of holonomic mechanical system are studied. The definition and criterion of Mei symmetry for holonomic system are given. A coordination function is introduced, the conditions under which the Mei symmetry can directly lead to the two types of conserved quantities and the forms of the two types of conserved quantities are obtained. An illustrative example is given. The result indicates that the coordination function can be selected properly according to the demand of the gauge function, thereby the gauge function can be found out more easily. Furthermore, since the choice of the coordination function has multiformity, much T more conserved quantity of Mei symmetry for holonomic mechanical system can be obtained.
文摘In this paper, a new kind of symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i.e. a Noether-Lie symmetry, is presented, and the criterion of this symmetry is also given. The Noether conserved quantity and the generalized Hojman conserved quantity of the Noether Lie symmetry of the system are obtained. The Noether-Lie symmetry contains the Noether symmetry and the Lie symmetry, and has more generalized significance.
基金Supported by the Graduate Students' Innovative Foundation of China University of Petroleum (East China) under Grant No.S2009-19
文摘The new types of conserved quantities, which are directly induced by Lie symmetry of nonholonomie mechanical systems in phase space, are studied. Firstly, the criterion of the weak Lie symmetry and the strong Lie symmetry are given. Secondly, the conditions of existence of the new type of conserved quantities induced by the weak Lie symmetry and the strong Lie symmetry directly are obtained, and their form is presented. Finaily, an Appell-Hamel example is discussed to further illustrate the applications of the results.
文摘In this paper, a new symmetry and its conserved quantities of a mechanical system in phase space are studied. The defition of this new symmetry, i.e., a unified one is presented, and the criterion of this symmetry is also given. The Noether, the generalized Hojman and the Mei conserved quantities of the unified symmetry of the system are obtained. The unified symmetry contains the Noether, the Lie and the Mei symmetries, and has more generalized significance.
文摘For a nonholonomic mechanical system, the generalized Mei conserved quantity and the new generalized Hojman conserved quantity deduced from Noether symmetry of the system are studied. The criterion equation of the Noether symmetry for the system is got. The conditions under which the Noether symmetry can lead to the two new conserved quantities are presented and the forms of the conserved quantities are obtained. Finally, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No 10672143)
文摘The Noether symmetry, the Lie symmetry and the conserved quantity of discrete holonomic systems with dependent coordinates are investigated in this paper. The Noether symmetry provides a discrete Noether identity and a conserved quantity of the system. The invariance of discrete motion equations under infinitesimal transformation groups is defined as the Lie symmetry, and the condition of obtaining the Noether conserved quantity from the Lie symmetry is also presented. An example is discussed to show the applications of the results.
基金National Natural Science Foundation of China under Grant No.10672143
文摘The Mei symmetry and conserved quantity of general discrete holonomic system are investigated in thispaper.The requirement for an invariant formalism of discrete motion equations is defined to be Mei symmetry.Thecriterion when a conserved quantity may be obtained from Mei symmetry is also deduced.An example is discussed forapplications of the results.
文摘Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are also obtained, An example is given to illustrate the application of the results.
文摘In this paper, a new kind of symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i,e., a Noether-Mei symmetry, is presented, and the criterion of this symmetry is also given. The Noether conserved quantity and the Mei conserved quantity deduced from the Noether-Mei symmetry of the system are obtained. Finally, two examples are given to illustrate the Bpplication of the results.