First we present a theoretical analysis of classical noise in ghost imaging system based on the coherent-mode representation theory. The classical noise depends crucially on the distribution of the eigenvalues of the ...First we present a theoretical analysis of classical noise in ghost imaging system based on the coherent-mode representation theory. The classical noise depends crucially on the distribution of the eigenvalues of the coherent-mode representation of the source and the decomposition coefficients of the object imaged. We show that both decreasing the distribution of the decomposition coefficients and increasing the distribution of the eigenvalues can lead to the decrease of classical noise.展开更多
The coherent-mode representation theory is firstly used to analyze lensless two-color ghost imaging. A quite complicated expression about the point-spread function(PSF) needs to be given to analyze which wavelength ...The coherent-mode representation theory is firstly used to analyze lensless two-color ghost imaging. A quite complicated expression about the point-spread function(PSF) needs to be given to analyze which wavelength has a stronger affect on imaging quality when the usual integral representation theory is used to ghost imaging. Unlike this theory, the coherent-mode representation theory shows that imaging quality depends crucially on the distribution of the decomposition coefficients of the object imaged in a two-color ghost imaging. The analytical expression of the decomposition coefficients of the object is unconcerned with the wavelength of the light used in the reference arm, but has relevance with the wavelength in the object arm. In other words, imaging quality of two-color ghost imaging depends primarily on the wavelength of the light illuminating the object. Our simulation results also demonstrate this conclusion.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10904015, 11074036, and 11004030)
文摘First we present a theoretical analysis of classical noise in ghost imaging system based on the coherent-mode representation theory. The classical noise depends crucially on the distribution of the eigenvalues of the coherent-mode representation of the source and the decomposition coefficients of the object imaged. We show that both decreasing the distribution of the decomposition coefficients and increasing the distribution of the eigenvalues can lead to the decrease of classical noise.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61771067,61631014,61471051,and 61401036)the Youth Research and Innovation Program of Beijing University of Posts and Telecommunications,China(Grant Nos.2015RC12 and 2017RC10)
文摘The coherent-mode representation theory is firstly used to analyze lensless two-color ghost imaging. A quite complicated expression about the point-spread function(PSF) needs to be given to analyze which wavelength has a stronger affect on imaging quality when the usual integral representation theory is used to ghost imaging. Unlike this theory, the coherent-mode representation theory shows that imaging quality depends crucially on the distribution of the decomposition coefficients of the object imaged in a two-color ghost imaging. The analytical expression of the decomposition coefficients of the object is unconcerned with the wavelength of the light used in the reference arm, but has relevance with the wavelength in the object arm. In other words, imaging quality of two-color ghost imaging depends primarily on the wavelength of the light illuminating the object. Our simulation results also demonstrate this conclusion.