期刊文献+
共找到626篇文章
< 1 2 32 >
每页显示 20 50 100
GLOBAL EXISTENCE OF CLASSICAL SOLUTION FOR A VISCOUS LIQUID-GAS TWO-PHASE MODEL WITH MASS-DEPENDENT VISCOSITY AND VACUUM 被引量:2
1
作者 王振 张卉 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期39-52,共14页
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowe... In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations. 展开更多
关键词 viscous liquid-gas two-phase model global classical solution VACUUM mass-dependent viscosity
下载PDF
Hypersphere World-Universe Model. Tribute to Classical Physics 被引量:6
2
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2018年第3期441-470,共30页
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these re... This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values. 展开更多
关键词 classical Physics HYPERSPHERE World-Universe model Medium of the World Dark Matter Particles Gravitoelectromagnetism COSMIC NEUTRINO Background Macroobjects Structure Emergent Phenomena Q-Dependent COSMOLOGICAL Parameters
下载PDF
Thermodynamic Consistency of Plate and Shell Mathematical Models in the Context of Classical and Non-Classical Continuum Mechanics and a Thermodynamically Consistent New Thermoelastic Formulation 被引量:3
3
作者 Karan S. Surana Sri Sai Charan Mathi 《American Journal of Computational Mathematics》 2020年第2期167-220,共54页
Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived ... Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived using the conservation and balance laws of continuum mechanics in conjunction with the corresponding kinematic assumptions. This is referred to as thermodynamic consistency of the mathematical models. Thermodynamic consistency ensures thermodynamic equilibrium during the evolution of the deformation. When the mathematical models are thermodynamically consistent, the second law of thermodynamics facilitates consistent derivations of constitutive theories in the presence of dissipation and memory mechanisms. This is the main motivation for the work presented in this paper. In the currently used mathematical models for plates/shells based on the assumed kinematic relations, energy functional is constructed over the volume consisting of kinetic energy, strain energy and the potential energy of the loads. The Euler’s equations derived from the first variation of the energy functional for arbitrary length when set to zero yield the mathematical model(s) for the deforming plates/shells. Alternatively, principle of virtual work can also be used to derive the same mathematical model(s). For linear elastic reversible deformation physics with small deformation and small strain, these two approaches, based on energy functional and the principle of virtual work, yield the same mathematical models. These mathematical models hold for reversible mechanical deformation. In this paper, we examine whether the currently used plate/shell mathematical models with the corresponding kinematic assumptions can be derived using the conservation and balance laws of classical or non-classical continuum mechanics. The mathematical models based on Kirchhoff hypothesis (classical plate theory, CPT) and first order shear deformation theory (FSDT) that are representative of most mathematical models for plates/shells are investigated in this paper for their thermodynamic consistency. This is followed by the details of a general and higher order thermodynamically consistent plate/shell thermoelastic mathematical model that is free of a priori consideration of kinematic assumptions and remains valid for very thin as well as thick plates/shells with comprehensive nonlinear constitutive theories based on integrity. Model problem studies are presented for small deformation behavior of linear elastic plates in the absence of thermal effects and the results are compared with CPT and FSDT mathematical models. 展开更多
关键词 Plate and Shell Mathematical models Energy Functional Thermodynamic Consistency classical Continuum Mechanics Non-classical Continuum Mechanics Internal Rotations Cosserat Rotations Principle of Virtual Work
下载PDF
Toward a sustainable growth path in Arab economies:an extension of classical growth model
4
作者 Amjad Taha Mucahit Aydin +2 位作者 Taiwo Temitope Lasisi Festus Victor Bekun Narayan Sethi 《Financial Innovation》 2023年第1期621-644,共24页
Background/Objectives:Many economies are on the trajectory of alternative growth drivers other than conventional capital and labor.Access to credit facilities is a pertinent indicator of economic growth.In line with t... Background/Objectives:Many economies are on the trajectory of alternative growth drivers other than conventional capital and labor.Access to credit facilities is a pertinent indicator of economic growth.In line with the United Nations Sustainable Development Goals(UNSDGs-8)agenda,the national goal for sustainable development for most economies and Arab economies is no exception.Therefore,the current study adopts a traditional growth model by exploring the relationship between gross domestic product(GDP)per capita,credit for private sectors,ratio of exports,real GDP,and per labor force participants for selected Arab economies annually from 2001 to 2020.Research design:This study leverages the Fourier Kwiatkowski–Phillips–Schmidt–Shin(KPSS)unit root test and second-generation panel econometrics as estimation techniques,such as Westerlund and Edgerton panel cointegration test,and the use of two estimators,namely the augmented mean group(AMG)and common correlated error mean group(CCEMG),to obtain robust results.Findings:Empirical findings from Westerlund and Edgerton panel cointegration tests validate the long-run equilibrium relationship among the outlined variables.Further empirical results indicate that the share of exports is negatively significant with economic growth in countries such as Kuwait,Lebanon,Tunisia,and Jordan.Additionally,savings and labor force participation have a positive relationship with economic growth in individual countries such as Algeria and Bahrain.As per the panel,there is no significant relationship between labor force participation and economic growth.This indicates that the skilled labor force enhanced economic growth.Conclusions:These findings come with inherent far-reaching policy suggestions for economies and panels.Further details on country-specific policy actions are presented in the concluding section. 展开更多
关键词 Arab economies classical growth model Panel econometrics SDG Savings-investment
下载PDF
Classical Ground State Spin Ordering of the Antiferromagnetic J_1-J_2 Model
5
作者 Ren-Gui Zhu 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第6期75-78,共4页
The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Ou... The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Our analytical derivations show that all the spins in the GS phase must lie in planes that are parallel to each other. When applying the derived formulations to concrete lattices such as the square and simple cubic lattices, we find that in the large J_2 region, a large continuous GS degeneracy concluded by a qualitative analysis is lifted, and collinear striped ordering is selected as the GS phase. 展开更多
关键词 classical GROUND STATE SPIN ORDERING ANTIFERROMAGNETIC J1-J2 model GROUND state(GS)
下载PDF
Dynamical Study of a Constant Viscous Dark Energy Model in Classical and Loop Quantum Cosmology
6
作者 Sara Benchikh Noureddine Mebarki Dalel Aberkane 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期144-148,共5页
Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop q... Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data. 展开更多
关键词 of on in Dynamical Study of a Constant Viscous Dark Energy model in classical and Loop Quantum Cosmology is that for been FRW
下载PDF
A Novel Classical Model of the Free Electron
7
作者 Arlen Young 《Journal of Modern Physics》 CAS 2022年第7期1117-1127,共11页
Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated ... Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center. 展开更多
关键词 classical Electron model Free Electron Electron Structure Electron Charge Electron Radius Electron Spin Electron Shape Electron Compressibility
下载PDF
Rating Score Data Analysis by Classical Test Theory and Many-Facet Rasch Model
8
作者 Tsai-Wei Huang Gwo-Jen Guo +1 位作者 William Loadman Fang-Mei Law 《Psychology Research》 2014年第3期222-231,共10页
关键词 h模型 多层面 数据分析 评价 测验 可靠性参数 教育评估 试题难度
下载PDF
Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade 被引量:11
9
作者 GAO Qiang CAI Xin +1 位作者 GUO Xing-wen MENG Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1746-1754,共9页
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris... The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter. 展开更多
关键词 wind turbine blade aeroelastic model classical flutter parameter sensitivities analysis
下载PDF
Classic mechanisms and experimental models for the anti-inflammatory effect of traditional Chinese medicine 被引量:11
10
作者 Du Hongzhi Hou Xiaoying +4 位作者 Guo Yujie Chen Le Miao Yuhuan Liu Dahui Huang Luqi 《Animal Models and Experimental Medicine》 CSCD 2022年第2期108-119,共12页
Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory ... Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases. 展开更多
关键词 anti-inflammatory effect inflammation and related diseases the classical mechanisms the experimental models traditional Chinese medicine
下载PDF
Review Article: Cosmology and Classical Physics 被引量:3
11
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2022年第4期1037-1072,共36页
In 1937, Paul Dirac proposed Large Number Hypothesis and Hypothesis of Variable Gravitational Constant, and later added notion of Continuous Creation of Matter in the World. Hypersphere World-Universe Model (WUM) foll... In 1937, Paul Dirac proposed Large Number Hypothesis and Hypothesis of Variable Gravitational Constant, and later added notion of Continuous Creation of Matter in the World. Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing different mechanism of Matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics. WUM is proposed as an alternative to prevailing Big Bang Model (BBM) that relies on General Relativity. WUM and BBM are principally different Models: 1) Instead of Initial Singularity with infinite energy density and extremely rapid expansion of spacetime (Inflation) in BBM;in WUM, there was Fluctuation (4D Nucleus of World with extrapolated radius equal to basic size unit of a) in Eternal Universe with finite extrapolated energy density (~10<sup>4</sup> less than nuclear density) and finite expansion of Nucleus in Its fourth spatial dimension with speed c that is gravitodynamic constant;2) Instead of alleged practically Infinite Homogeneous and Isotropic Universe around Initial Singularity in BBM;in WUM, 3D Finite Boundless World (Hypersphere of 4D Nucleus) presents Patchwork Quilt of various Luminous Superclusters (&gE;10<sup>3</sup>), which emerged in different places of World at different Cosmological times. Medium of World, consisting of protons, electrons, photons, neutrinos, and dark matter particles, is Homogeneous and Isotropic. Distribution of Macroobjects is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous. Most direct observational evidence of validity of WUM are: 1) Microwave Background Radiation and Intergalactic Plasma speak in favor of existence of Medium;2) Laniakea Supercluster with binding mass ~10<sup>17</sup>M<sub>&odot;</sub> is home to Milky Way (MW) and ~10<sup>5</sup> other nearby galaxies, which did not start their movement from Initial Singularity;3) MW is gravitationally bounded with Virgo Supercluster (VS) and has Orbital Angular Momentum that far exceeds its rotational angular momentum;4) Mass-to-light ratio of VS is ~300 times larger than that of Solar ratio. Similar ratios are obtained for other superclusters. These ratios are main arguments in favor of presence of significant amounts of Dark Matter in the World. 5) Astronomers discovered the most distant galaxy HD1 that is ~13.5 Bly away. WUM predicts discovery of galaxies with a distance of ~13.8 Bly. Medium of World, Dark Matter, and Angular Momentum are main Three Pillars of WUM.</sup></sup> 展开更多
关键词 classical Physics World-Universe model Medium of World Dark Matter Angular Momentum Space Time Gravity Principle of Relativity Universality of Physical Laws Conservation Law Dark Epoch Luminous Epoch Volcanic Rotational Fission
下载PDF
Research on the Strategic Model for the Translation of Taoist Classics Based on Adaptation Theory
12
作者 LIU Ze-lin 《Journal of Literature and Art Studies》 2019年第8期907-912,共6页
The core view of the adaptation theory is that language has a systematic propagation law,and language translation should be unfolded and extended according to the basic structure of the system.This paper has conducted... The core view of the adaptation theory is that language has a systematic propagation law,and language translation should be unfolded and extended according to the basic structure of the system.This paper has conducted an in-depth study on the translation of classics of the Taoist culture,with the purpose of improving the accuracy of the translation strategy.This paper also focuses on adaptation theory and taking the continuation and adaptation process of discourse as the core of the research,and conducts the construction analysis on the strategic model.The content of this paper is predicted to offer some simple translation reference ideas for professional translators who are dedicated to the direction of classics. 展开更多
关键词 ADAPTATION theory TAOIST CULTURE classicS TRANSLATION STRATEGIC model
下载PDF
Continuous Variable Quantum MNIST Classifiers—Classical-Quantum Hybrid Quantum Neural Networks
13
作者 Sophie Choe Marek Perkowski 《Journal of Quantum Information Science》 2022年第2期37-51,共15页
In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The pro... In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to n<sup>m</sup> classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size n<sup>m</sup>. They are then interpreted as one-hot encoded labels, padded with n<sup>m</sup> - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy. 展开更多
关键词 Quantum Computing Quantum Machine Learning Quantum Neural Networks Continuous Variable Quantum Computing Photonic Quantum Computing classical Quantum Hybrid model Quantum MNIST Classification
下载PDF
Mathematical Wave Functions and 3D Finite Element Modelling of the Electron and Positron
14
作者 Declan Traill 《Journal of Applied Mathematics and Physics》 2024年第4期1134-1162,共29页
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an... The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles. 展开更多
关键词 ELECTRON POSITRON Wave Function Solution Electromagnetic Spin Mass Charge Proof Fundamental Particle Properties Quantum Mechanics classical Physics Computer 3D model Schrödinger Equation RMS KLEIN GORDON Electric Magnetic Lorentz Invariant Hertzian Vector Point Potential Field Density Phase Flow Attraction REPULSION Shell Theorem Ehrenfest VIRIAL Normalization Harmonic Oscillator
下载PDF
BOUNDEDNESS AND EXPONENTIAL STABILIZATION IN A PARABOLIC-ELLIPTIC KELLER–SEGEL MODEL WITH SIGNAL-DEPENDENT MOTILITIES FOR LOCAL SENSING CHEMOTAXIS 被引量:1
15
作者 Jie JIANG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第3期825-846,共22页
In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the ... In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded.In the current work,we are interested in the boundedness and exponential stability of the classical solution in higher dimensions.With the aid of a Lyapunov functional and a delicate Alikakos-Moser type iteration,we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically.Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy.Finally,thanks to the Lyapunov functional again,we prove the exponential stabilization toward the spatially homogeneous steady states.Our boundedness result improves those in[1]and the exponential stabilization is obtained for the first time. 展开更多
关键词 classical solution BOUNDEDNESS exponential stabilization DEGENERACY Keller-Segel models
下载PDF
An Overview on Opinion Spreading Model 被引量:1
16
作者 Pei Liu Xi Chen 《Journal of Applied Mathematics and Physics》 2015年第4期449-454,共6页
Research on opinion spreading has received more and more attention in recent years. This paper focus on make a summary of opinion evolution researches, we first review some classical opinion models, and then introduce... Research on opinion spreading has received more and more attention in recent years. This paper focus on make a summary of opinion evolution researches, we first review some classical opinion models, and then introduce the existing result of improvement models from the aspect of opinion space, model parameter, social network and so on. The current study’s limitation and further research are also prospected at the end. By in-depth understand the opinion spreading mechanism so as to guide and control the public opinions, which is very useful and meaningful. 展开更多
关键词 OPINION SPREADING classical model SPREADING MECHANISM
下载PDF
Consistency and Validity of the Mathematical Models and the Solution Methods for BVPs and IVPs Based on Energy Methods and Principle of Virtual Work for Homogeneous Isotropic and Non-Homogeneous Non-Isotropic Solid Continua 被引量:1
17
作者 Karan S. Surana Emilio N. Alverio 《Applied Mathematics》 2020年第7期546-578,共33页
Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous... Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper. 展开更多
关键词 Energy Methods Principle of Virtual Work Calculus of Variations Euler’s Equation Mathematical model classical and Non-classical Continuum Mechanics
下载PDF
An Alternative Model of Proton and Neutron
18
作者 Arend Niehaus 《Journal of Modern Physics》 2020年第2期285-293,共9页
Based on a model of fermions which implies a model of photons, a model of the neutron is constructed by merging two photons of equal energy propagating in opposite directions. The fermion model is outlined, and the me... Based on a model of fermions which implies a model of photons, a model of the neutron is constructed by merging two photons of equal energy propagating in opposite directions. The fermion model is outlined, and the merging of two photons is described in detail. The radius of the neutron obtained in this way is Rn = 0.84008… fm. This value is four times the reduced Compton wavelength of the neutron. Assuming the same model for the proton, one obtains a value of Rp = 0.84123… fm, which agrees with the most recent experimental value for the charge radius of the proton within the given limits of error. The neutral charge of the neutron is reproduced, and the positive charge of the proton follows within the model, if the proton is formed via the anti-neutron by losing one electron. S = ±&#295;/2, and zero dipole moment, is also reproduced for proton and neutron. Further, a value of the magnetic moment of the neutron of μ= &minus2.00μN (μN: nuclear magnetic moment), and of the proton of μ = 2.666… μN is predicted. The deviation by ca. 5% from the recommended respective values of (&minus1.9130μn), and (2.793μn) is ascribed to the (g-2)-anomaly. Finally, the relation of the model with the established description of the nucleons in terms of three quarks bound by gluons is shortly discussed. 展开更多
关键词 Quantum PHYSICS modeling of NUCLEONS classical PROBABILITY
下载PDF
On the Relationship between Statistical and Phenomenological Models of the Thermodynamic Systems
19
作者 Igor Samkhan 《Journal of Modern Physics》 2013年第7期38-44,共7页
The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concep... The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concepts of the statistical and phenomenological methods of describing the classical systems do not quite correlate with each other. Particularly, in these methods various caloric ideal gas equations of state are employed, while the possibility existing in the thermodynamic cyclic processes to obtain the same distributions both due to a change of the particle concentration and owing to a change of temperature is not allowed for in the statistical methods. The above-mentioned difference of the equations of state is cleared away when using in the statistical functions corresponding to the canonical Gibbs equations instead of the Planck’s constant a new scale factor that depends on the parameters of a system and coincides with the Planck’s constant in going of the system to the degenerate state. Under such an approach, the statistical entropy is transformed into one of the forms of heat capacity. In its turn, the agreement of the methods under consideration in the question as to the dependence of the molecular distributions on the concentration of particles, apparently, will call for further refinement of the physical model of ideal gas and the techniques for its statistical description. 展开更多
关键词 THERMODYNAMICS classical Systems Description models STATISTICAL Functions Phase Space PROBABILITY Distribution Particle Concentration
下载PDF
Electron Shape Calculated for the Dual-Charge Dual-Mass Model
20
作者 Arlen Young 《Journal of Modern Physics》 CAS 2023年第3期198-207,共10页
A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. ... A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius. 展开更多
关键词 Electron Shape classical Electron model Dual-Charge Dual-Mass model Electron Radius Negative Mass Electron Mass Inconsistency Electron Charge Inconsistency Fine Structure Constant
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部