[Objective] This study aimed to improve the accuracy of remote sensing classification for Dongting Lake Wetland.[Method] Based on the TM data and ground GIS information of Donting Lake,the decision tree classification...[Objective] This study aimed to improve the accuracy of remote sensing classification for Dongting Lake Wetland.[Method] Based on the TM data and ground GIS information of Donting Lake,the decision tree classification method was established through the expert classification knowledge base.The images of Dongting Lake wetland were classified into water area,mudflat,protection forest beach,Carem spp beach,Phragmites beach,Carex beach and other water body according to decision tree layers.[Result] The accuracy of decision tree classification reached 80.29%,which was much higher than the traditional method,and the total Kappa coefficient was 0.883 9,indicating that the data accuracy of this method could fulfill the requirements of actual practice.In addition,the image classification results based on knowledge could solve some classification mistakes.[Conclusion] Compared with the traditional method,the decision tree classification based on rules could classify the images by using various conditions,which reduced the data processing time and improved the classification accuracy.展开更多
Information embodied in machine component classification codes has internal relation with the probability distribu- tion of the code symbol. This paper presents a model considering codes as information source based on...Information embodied in machine component classification codes has internal relation with the probability distribu- tion of the code symbol. This paper presents a model considering codes as information source based on Shannon’s information theory. Using information entropy, it preserves the mathematical form and quantitatively measures the information amount of a symbol and a bit in the machine component classification coding system. It also gets the maximum value of information amount and the corresponding coding scheme when the category of symbols is fixed. Samples are given to show how to evaluate the information amount of component codes and how to optimize a coding system.展开更多
This paper depicted the physiographic landscape features and natural vegetation situation of study area (the eastern Jilin Province), and expatiates the definition, basic characters and its development of Ecological L...This paper depicted the physiographic landscape features and natural vegetation situation of study area (the eastern Jilin Province), and expatiates the definition, basic characters and its development of Ecological Land Classification (ELC). Based on the combination of relief map, satellite photography for study area and vegetation inventory data of 480 sample sites, a 5-class and a 15-class ecological land type map was concluded according to 4 important factors including slope, aspect, vegetation and elevation. Ecological Classification System (ECS) is a method to identify, characterize, and map ecosystems. The Ecological Land Type (ELT) was examined and applied initially in eastern Jilin Province.展开更多
Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides...Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics(ROC) curve, spatially agreed area approach and seed cell area index(SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning.展开更多
Land use & land cover change detection in rapid growth urbanized area have been studied by many researchers and there are many works on this topic. Commonly, settlement sprawl in area depends on many factors such ...Land use & land cover change detection in rapid growth urbanized area have been studied by many researchers and there are many works on this topic. Commonly, settlement sprawl in area depends on many factors such as eco-nomic prosperity and population growth. Iraq is one of the countries which witnessed rapid development in the settlement area. Remote sensing and geographic information system (GIS) are analytical software technologies to evaluate this familiar worldwide phenomenon. This study illustrates settlement development in Sulaimaniyah Governorate from 2001 to 2017 using Landsat satellite imageries of different periods. All images had been classified using remote sensing software in order to proceed powerful mapping of land use classification. Maximum likelihood method is used in the accurately extracted solution information from geospatial imagery. Landsat images from the study area were categorized into four different classes. These are: forest, vegetation, soil, and settlement. Change detection analysis results illustrate that in the face of an explosive demographic shift in the settlement area where the record + 8.99 percent which is equivalent to 51.80 Km2 over a 16-year period and settlement area increasing from 3.87 percent in 2001 to 12.86 percent in 2017. Accuracy assessment model was used to evaluate (LULC) classified images. Accuracy results show an overall accuracy of 78.83% to 90.09% from 2001 to 2017 respectively while convincing results of Kappa coefficient given between substantial and almost perfect agreements. This study will help decision-makers in urban plan for future city development.展开更多
Remote sensing,geographic information system and GPS(3S)technology have been well recognized as comprehensive,accurate and up-to-date information collection methods,which are increasingly adopted in biodiversity conse...Remote sensing,geographic information system and GPS(3S)technology have been well recognized as comprehensive,accurate and up-to-date information collection methods,which are increasingly adopted in biodiversity conservation.This review summarizes the application of object-oriented classification methods on biodiversity monitoring projects based on high-resolution remote sensing imagines in China.Biodiversity conservation research based on GIS technology in China is also discussed,with emphasis on the advantages of GIS analysis and modeling function.展开更多
This paper introduces an advanced method based on remote sensing and Geographic Information System for urban open space extraction combining spectral and geometric characteristics. From both semantic and remote sensin...This paper introduces an advanced method based on remote sensing and Geographic Information System for urban open space extraction combining spectral and geometric characteristics. From both semantic and remote sensing perspectives, a hybrid hierarchy structure and class organization of open space are issues and mapped from one to another. Based on per-pixel and segmentation mechanism separately, two classification approaches are performed. Owing to prior of spatial aggregation and spectral contribution, the segmentation-based classification exhibits its superiority over a pixel-based classification. Finally a GIS-based post procedure is hired to eliminate some unsuitable open space components in both spatial and numerical constraints on the one hand, and separate open space some fabrics from fused remote sensing classes by defining their Shape Index on the other hand. The case study of Beer Sheva based on ASTER data proves this method is a feasible way for open space extraction.展开更多
With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important inf...With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.展开更多
文摘[Objective] This study aimed to improve the accuracy of remote sensing classification for Dongting Lake Wetland.[Method] Based on the TM data and ground GIS information of Donting Lake,the decision tree classification method was established through the expert classification knowledge base.The images of Dongting Lake wetland were classified into water area,mudflat,protection forest beach,Carem spp beach,Phragmites beach,Carex beach and other water body according to decision tree layers.[Result] The accuracy of decision tree classification reached 80.29%,which was much higher than the traditional method,and the total Kappa coefficient was 0.883 9,indicating that the data accuracy of this method could fulfill the requirements of actual practice.In addition,the image classification results based on knowledge could solve some classification mistakes.[Conclusion] Compared with the traditional method,the decision tree classification based on rules could classify the images by using various conditions,which reduced the data processing time and improved the classification accuracy.
基金Projects supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2004AA84ts03) and the Science and Technology Committee of Zhejiang Province (No. 2004C31018), China
文摘Information embodied in machine component classification codes has internal relation with the probability distribu- tion of the code symbol. This paper presents a model considering codes as information source based on Shannon’s information theory. Using information entropy, it preserves the mathematical form and quantitatively measures the information amount of a symbol and a bit in the machine component classification coding system. It also gets the maximum value of information amount and the corresponding coding scheme when the category of symbols is fixed. Samples are given to show how to evaluate the information amount of component codes and how to optimize a coding system.
基金supported by Chinese Academy of Sciences"100 people’project and the Open Research Station of Changbai Mountain Forest Ecosystem
文摘This paper depicted the physiographic landscape features and natural vegetation situation of study area (the eastern Jilin Province), and expatiates the definition, basic characters and its development of Ecological Land Classification (ELC). Based on the combination of relief map, satellite photography for study area and vegetation inventory data of 480 sample sites, a 5-class and a 15-class ecological land type map was concluded according to 4 important factors including slope, aspect, vegetation and elevation. Ecological Classification System (ECS) is a method to identify, characterize, and map ecosystems. The Ecological Land Type (ELT) was examined and applied initially in eastern Jilin Province.
文摘Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics(ROC) curve, spatially agreed area approach and seed cell area index(SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning.
文摘Land use & land cover change detection in rapid growth urbanized area have been studied by many researchers and there are many works on this topic. Commonly, settlement sprawl in area depends on many factors such as eco-nomic prosperity and population growth. Iraq is one of the countries which witnessed rapid development in the settlement area. Remote sensing and geographic information system (GIS) are analytical software technologies to evaluate this familiar worldwide phenomenon. This study illustrates settlement development in Sulaimaniyah Governorate from 2001 to 2017 using Landsat satellite imageries of different periods. All images had been classified using remote sensing software in order to proceed powerful mapping of land use classification. Maximum likelihood method is used in the accurately extracted solution information from geospatial imagery. Landsat images from the study area were categorized into four different classes. These are: forest, vegetation, soil, and settlement. Change detection analysis results illustrate that in the face of an explosive demographic shift in the settlement area where the record + 8.99 percent which is equivalent to 51.80 Km2 over a 16-year period and settlement area increasing from 3.87 percent in 2001 to 12.86 percent in 2017. Accuracy assessment model was used to evaluate (LULC) classified images. Accuracy results show an overall accuracy of 78.83% to 90.09% from 2001 to 2017 respectively while convincing results of Kappa coefficient given between substantial and almost perfect agreements. This study will help decision-makers in urban plan for future city development.
文摘Remote sensing,geographic information system and GPS(3S)technology have been well recognized as comprehensive,accurate and up-to-date information collection methods,which are increasingly adopted in biodiversity conservation.This review summarizes the application of object-oriented classification methods on biodiversity monitoring projects based on high-resolution remote sensing imagines in China.Biodiversity conservation research based on GIS technology in China is also discussed,with emphasis on the advantages of GIS analysis and modeling function.
文摘This paper introduces an advanced method based on remote sensing and Geographic Information System for urban open space extraction combining spectral and geometric characteristics. From both semantic and remote sensing perspectives, a hybrid hierarchy structure and class organization of open space are issues and mapped from one to another. Based on per-pixel and segmentation mechanism separately, two classification approaches are performed. Owing to prior of spatial aggregation and spectral contribution, the segmentation-based classification exhibits its superiority over a pixel-based classification. Finally a GIS-based post procedure is hired to eliminate some unsuitable open space components in both spatial and numerical constraints on the one hand, and separate open space some fabrics from fused remote sensing classes by defining their Shape Index on the other hand. The case study of Beer Sheva based on ASTER data proves this method is a feasible way for open space extraction.
文摘With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.