A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data t...A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data through environmental monitoring.The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction.This study employs a deep learning method,CNN-LSTM,and two-way feature extraction to classify audio systems within CPS.The primary objective of this system,which is built upon a convolutional neural network(CNN)with Long Short Term Memory(LSTM),is to analyze the vocalization patterns of two different species of anurans.It has been demonstrated that CNNs,when combined with mel-spectrograms for sound analysis,are suitable for classifying ambient noises.Initially,the data is augmented and preprocessed.Next,the mel spectrogram features are extracted through two-way feature extraction.First,Principal Component Analysis(PCA)is utilized for dimensionality reduction,followed by Transfer learning for audio feature extraction.Finally,the classification is performed using the CNN-LSTM process.This methodology can potentially be employed for categorizing various biological acoustic objects and analyzing biodiversity indexes in natural environments,resulting in high classification accuracy.The study highlights that this CNNLSTM approach enables cost-effective and resource-efficient monitoring of large natural regions.The dissemination of updated CNN-LSTM models across distant IoT nodes is facilitated flexibly and dynamically through the utilization of CPS.展开更多
The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is co...The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is correlated withhuman affects and robustness against illumination changes. Therefore, studieshave increasingly used the thermal imaging as a potential and supplemental solution to overcome the challenges of visual (RGB) imaging, such as the variation oflight conditions and revealing original human affect. Moreover, the thermal-basedimaging has shown promising results in the detection of psychophysiological signals, such as pulse rate and respiration rate in a contactless and noninvasive way.This paper presents a brief review on human affects and focuses on the advantages and challenges of the thermal imaging technique. In addition, this paper discusses the stages of thermal-based human affective state recognition, such asdataset type, preprocessing stage, region of interest (ROI), feature descriptors,and classification approaches with a brief performance analysis based on a number of works in the literature. This analysis could help beginners in the thermalimaging and affective recognition domain to explore numerous approaches usedby researchers to construct an affective state system based on thermal imaging.展开更多
基金Funded by Institutional Fund Projects under Grant No.IFPIP:236-611-1442 by Ministry of Education and King Abdulaziz University,Jeddah,Saudi Arabia(A.O.A.).
文摘A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data through environmental monitoring.The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction.This study employs a deep learning method,CNN-LSTM,and two-way feature extraction to classify audio systems within CPS.The primary objective of this system,which is built upon a convolutional neural network(CNN)with Long Short Term Memory(LSTM),is to analyze the vocalization patterns of two different species of anurans.It has been demonstrated that CNNs,when combined with mel-spectrograms for sound analysis,are suitable for classifying ambient noises.Initially,the data is augmented and preprocessed.Next,the mel spectrogram features are extracted through two-way feature extraction.First,Principal Component Analysis(PCA)is utilized for dimensionality reduction,followed by Transfer learning for audio feature extraction.Finally,the classification is performed using the CNN-LSTM process.This methodology can potentially be employed for categorizing various biological acoustic objects and analyzing biodiversity indexes in natural environments,resulting in high classification accuracy.The study highlights that this CNNLSTM approach enables cost-effective and resource-efficient monitoring of large natural regions.The dissemination of updated CNN-LSTM models across distant IoT nodes is facilitated flexibly and dynamically through the utilization of CPS.
基金funded by the research university grant by Universiti Sains Malaysia[1001.PKOMP.8014001].
文摘The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is correlated withhuman affects and robustness against illumination changes. Therefore, studieshave increasingly used the thermal imaging as a potential and supplemental solution to overcome the challenges of visual (RGB) imaging, such as the variation oflight conditions and revealing original human affect. Moreover, the thermal-basedimaging has shown promising results in the detection of psychophysiological signals, such as pulse rate and respiration rate in a contactless and noninvasive way.This paper presents a brief review on human affects and focuses on the advantages and challenges of the thermal imaging technique. In addition, this paper discusses the stages of thermal-based human affective state recognition, such asdataset type, preprocessing stage, region of interest (ROI), feature descriptors,and classification approaches with a brief performance analysis based on a number of works in the literature. This analysis could help beginners in the thermalimaging and affective recognition domain to explore numerous approaches usedby researchers to construct an affective state system based on thermal imaging.