Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in...Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains.展开更多
When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes ...When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes an improved algorithm based on classification and user trust.It firstly classifies all the ratings by the categories of items.And then,for each category,it evaluates the trustworthy degree of each user on the category and imposes the degree on the ratings of the user.Finally,the algorithm explores the similarities between users,finds the nearest neighbors,and makes recommendations within each category.Simulations show that the improved algorithm outperforms the traditional collaborative filtering algorithms and enhances the accuracy of recommendation.展开更多
A convolution model of flaw scattering echoes and an adaptive filtering deconvolution method are presented. The effect of the method is analyzed by simulating a given system. By deconvolution, the influence of the tra...A convolution model of flaw scattering echoes and an adaptive filtering deconvolution method are presented. The effect of the method is analyzed by simulating a given system. By deconvolution, the influence of the transducer on echoes is reduced greatly and the flaw features stand out more clearly in the deconvolved echoes than in flaw echoes themselves. flaw echo signals of 18 flaw samples are processed by adaptive filtering deconvolution. As a result, flaws are classified successfully展开更多
In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive fi...In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive filtering algorithm is used to reduce the influence of them on positioning results.However,it is difficult to accurately identify and separate the influence of abnormal observations and kinematic model disturbances on positioning results,especially in the application of kinematic Precise Point Positioning(PPP).This has always been a key factor limiting the performance of conventional robust adaptive filtering algorithms.To address this problem,this paper proposes a two-step robust adaptive filtering algorithm,which includes two filtering steps:without considering the kinematic model information,the first step of filtering only detects the abnormal observations.Based on the filtering results of the first step,the second step makes further detection on the kinematic model disturbances and conducts adaptive processing.Theoretical analysis and experiment results indicate that the two-step robust adaptive filtering algorithm can further enhance the robustness of the filtering against the influence of abnormal observations and kinematic model disturbances on the positioning results.Ultimately,improvement of the stability and reliability of kinematic PPP is significant.展开更多
基金The Natural Science Foundation of Hunan Province,China(No.2020JJ4601)Open Fund of the Key Laboratory of Highway Engi-neering of Ministry of Education(No.kfj190203).
文摘Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains.
基金supported by Phase 4,Software Engineering(Software Service Engineering)under Grant No.XXKZD1301
文摘When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes an improved algorithm based on classification and user trust.It firstly classifies all the ratings by the categories of items.And then,for each category,it evaluates the trustworthy degree of each user on the category and imposes the degree on the ratings of the user.Finally,the algorithm explores the similarities between users,finds the nearest neighbors,and makes recommendations within each category.Simulations show that the improved algorithm outperforms the traditional collaborative filtering algorithms and enhances the accuracy of recommendation.
文摘A convolution model of flaw scattering echoes and an adaptive filtering deconvolution method are presented. The effect of the method is analyzed by simulating a given system. By deconvolution, the influence of the transducer on echoes is reduced greatly and the flaw features stand out more clearly in the deconvolved echoes than in flaw echoes themselves. flaw echo signals of 18 flaw samples are processed by adaptive filtering deconvolution. As a result, flaws are classified successfully
基金co-supported by the National Natural Science Foundation of China(No.41874034)the National key research and development program of China(No.2016YFB0502102)+1 种基金the Beijing Natural Science Foundation(No.4202041)the Aeronautical Science Foundation of China(No.2016ZC51024)。
文摘In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive filtering algorithm is used to reduce the influence of them on positioning results.However,it is difficult to accurately identify and separate the influence of abnormal observations and kinematic model disturbances on positioning results,especially in the application of kinematic Precise Point Positioning(PPP).This has always been a key factor limiting the performance of conventional robust adaptive filtering algorithms.To address this problem,this paper proposes a two-step robust adaptive filtering algorithm,which includes two filtering steps:without considering the kinematic model information,the first step of filtering only detects the abnormal observations.Based on the filtering results of the first step,the second step makes further detection on the kinematic model disturbances and conducts adaptive processing.Theoretical analysis and experiment results indicate that the two-step robust adaptive filtering algorithm can further enhance the robustness of the filtering against the influence of abnormal observations and kinematic model disturbances on the positioning results.Ultimately,improvement of the stability and reliability of kinematic PPP is significant.