期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Classification and Analysis of Tube Hydroforming Processes with Respect to Adaptive FEM Simulations 被引量:2
1
作者 Sebastian MOTSCH Matteo STRANO 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期139-140,共2页
Tube hydroforming process is a relative new process f or production of structural parts of low weight and high rigidity. The successfu lness of the process depends largely on the a proper selection of loading path w h... Tube hydroforming process is a relative new process f or production of structural parts of low weight and high rigidity. The successfu lness of the process depends largely on the a proper selection of loading path w hich is axial feeding distance as related to the applied internal pressure. Due to the complicated nature of plastic deformation, a optimum loading path which w ill guarantee good hydroformed parts free of winkle and fracture has often to be determined by finite element analysis. In order to save trials and errors, adap tive FEM simulation method has been developed. To effectively apply the adaptive simulation method, we have to know the applicability of the method. In this pap er, a classification of tube hydroforming (THF) processes based on sensitivity to loading parameters has been suggested. Characteristics of the classification have been analyzed in terms of failure mode, dominant loading parameters and th eir working windows. It was discussed that the so called pressure dominant THF p rocess is the most difficult process for both simulation in FEM analysis and pra ctical operation in real manufacturing situation. To effectively find out the op timum loading path for pressure dominant THF process, adaptive FEM simulation st rategies are mostly needed. 展开更多
关键词 tube hydroforming process classification loadin g path adaptive simulation
下载PDF
Smart Approaches to Efficient Text Mining for Categorizing Sexual Reproductive Health Short Messages into Key Themes
2
作者 Tobias Makai Mayumbo Nyirenda 《Open Journal of Applied Sciences》 2024年第2期511-532,共22页
To promote behavioral change among adolescents in Zambia, the National HIV/AIDS/STI/TB Council, in collaboration with UNICEF, developed the Zambia U-Report platform. This platform provides young people with improved a... To promote behavioral change among adolescents in Zambia, the National HIV/AIDS/STI/TB Council, in collaboration with UNICEF, developed the Zambia U-Report platform. This platform provides young people with improved access to information on various Sexual Reproductive Health topics through Short Messaging Service (SMS) messages. Over the years, the platform has accumulated millions of incoming and outgoing messages, which need to be categorized into key thematic areas for better tracking of sexual reproductive health knowledge gaps among young people. The current manual categorization process of these text messages is inefficient and time-consuming and this study aims to automate the process for improved analysis using text-mining techniques. Firstly, the study investigates the current text message categorization process and identifies a list of categories adopted by counselors over time which are then used to build and train a categorization model. Secondly, the study presents a proof of concept tool that automates the categorization of U-report messages into key thematic areas using the developed categorization model. Finally, it compares the performance and effectiveness of the developed proof of concept tool against the manual system. The study used a dataset comprising 206,625 text messages. The current process would take roughly 2.82 years to categorise this dataset whereas the trained SVM model would require only 6.4 minutes while achieving an accuracy of 70.4% demonstrating that the automated method is significantly faster, more scalable, and consistent when compared to the current manual categorization. These advantages make the SVM model a more efficient and effective tool for categorizing large unstructured text datasets. These results and the proof-of-concept tool developed demonstrate the potential for enhancing the efficiency and accuracy of message categorization on the Zambia U-report platform and other similar text messages-based platforms. 展开更多
关键词 Knowledge Discovery in Text (KDT) Sexual Reproductive Health (SRH) Text Categorization Text classification Text Extraction Text Mining Feature Extraction Automated classification Process Performance Stemming and Lemmatization Natural Language processing (NLP)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部