期刊文献+
共找到104,646篇文章
< 1 2 250 >
每页显示 20 50 100
Intrahepatic portal venous systems in adult patients with cavernous transformation of portal vein: Imaging features and a new classification 被引量:1
1
作者 Xin Huang Qian Lu +5 位作者 Yue-Wei Zhang Lin Zhang Zhi-Zhong Ren Xiao-Wei Yang Ying Liu Rui Tang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第5期481-486,共6页
Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to... Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV. 展开更多
关键词 Cavernous transformation of the portal vein classification Direct portal venography Intrahepatic portal venous system
下载PDF
Pathological and Clinical Correlation European Union-Thyroid Imaging Reporting and Data System (EU-TIRADS) Classification of Thyroid Nodules in Two University Hospitals in Cotonou
2
作者 Annelie Kerekou Hode Hubert Dedjan Fréjus Alamou 《Open Journal of Endocrine and Metabolic Diseases》 2024年第2期15-25,共11页
Introduction: Since its creation in 2017 by the European community, the EU-TIRADS classification has enjoyed an excellent reputation in several countries around the world. Indeed, several studies conducted in these co... Introduction: Since its creation in 2017 by the European community, the EU-TIRADS classification has enjoyed an excellent reputation in several countries around the world. Indeed, several studies conducted in these countries testify to the effectiveness of this tool for the management of nodular thyroid pathology. However, in Benin, the contribution of this classification has not yet been evaluated. It is therefore to overcome this inadequacy that we undertook this study. Objective: Participate in improving the diagnostic and therapeutic management of thyroid nodules at the CNHU HKM in Cotonou and at the CHUZ in Suru-Léré. Methods: This is a cross-sectional study with retrospective data collection spread over a period of 3 years 5 months, from January 2019 to May 2022 and carried out jointly in the Endocrinology Metabolism Nutrition and ORL-CCF departments of the CNHU HKM of Cotonou and in the ORL-CCF department of the CHUZ of Suru-Léré. The study population consisted of patients who consulted the University Clinic of Endocrinology Metabolism Nutrition, the University Clinic of ORL-CCF of the CNHU-HKM and the University Clinic of ORL-CCF of the CHUZ of Suru-Léré for thyroid nodule and who have had surgery. The study data was collected from patients hospitalization records using a survey form. Results: On ultrasound, according to the EU-TIRADS classification, 56.8% of nodules presented a low risk of malignancy (EU-TIRADS 3) compared to respectively 19.8%;23% and 2.5% of nodules with zero (EU-TIRADS 2), intermediate (EU-TIRADS 4) and high (EU-TIRADS 5) risk of malignancy. Regarding the performance of this classification, it is sensitive in 37.5% of cases and has a specificity of 78.5% with a PPV (Positive Predictive Value) and a NPV (Negative Predictive Value) respectively of 6.6 % and 91.6%. Furthermore, the bivariate correlations revealed that the size of the nodule was significantly associated with the malignancy of the nodule (p = 0.014) and the calculated value of the Yule’s Q coefficient (0.375) reflects a moderate intensity of the connection between the EU-TIRADS and histology. Conclusion: the EU-TIRADS classification, due to its excellent NPV, is of great interest for the management of thyroid nodules at the CNHU-HKM of Cotonou and at the CHUZ of Suru-Léré. In view of this, particular emphasis must be placed on its regular and rigorous use. 展开更多
关键词 Thyroid Nodules EU-TIRADS classification MALIGNANCY
下载PDF
Intelligent Garbage Recycling: Design and Implementation Exploration of Automatic Classification System
3
作者 Dexian HUANG Binjun GAN 《Meteorological and Environmental Research》 2024年第2期37-39,43,共4页
This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The syst... This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The system monitors the composition and properties of waste in real time through sensors,and uses image recognition technology for precise classification,and the robotic arm is responsible for grabbing and disposing.The design and implementation of the system have important practical significance and application value,and help promote the popularization and standardization of waste classification.This paper details the system s architecture,module division,sensors and recognition technology,robotic arm and grabbing technology,data processing and control system,and testing and optimization process.Experimental results show that the system has efficient waste recycling efficiency and accuracy in practical applications,bringing new development opportunities to the waste recycling industry. 展开更多
关键词 Waste classification and recycling SENSORS Image recognition Robotic arms Convolutional neural networks
下载PDF
Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets
4
作者 Shuo Xu Yuefu Zhang +1 位作者 Xin An Sainan Pi 《Journal of Data and Information Science》 CSCD 2024年第2期81-103,共23页
Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on t... Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution. 展开更多
关键词 Multi-label classification Real-World datasets Hierarchical structure classification system Label correlation Machine learning
下载PDF
Classification of Sailboat Tell Tail Based on Deep Learning
5
作者 CHANG Xiaofeng YU Jintao +3 位作者 GAO Ying DING Hongchen LIU Yulong YU Huaming 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期710-720,共11页
The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailb... The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailboat during sailing for the best sailing effect.Normally it is difficult for sailors to keep an eye for a long time on the tell sail for accurate judging its changes,affected by strong sunlight and visual fatigue.In this case,we adopt computer vision technology in hope of helping the sailors judge the changes of the tell tail in ease with ease.This paper proposes for the first time a method to classify sailboat tell tails based on deep learning and an expert guidance system,supported by a sailboat tell tail classification data set on the expert guidance system of interpreting the tell tails states in different sea wind conditions,including the feature extraction performance.Considering the expression capabilities that vary with the computational features in different visual tasks,the paper focuses on five tell tail computing features,which are recoded by an automatic encoder and classified by a SVM classifier.All experimental samples were randomly divided into five groups,and four groups were selected from each group as the training set to train the classifier.The remaining one group was used as the test set for testing.The highest resolution value of the ResNet network was 80.26%.To achieve better operational results on the basis of deep computing features obtained through the ResNet network in the experiments.The method can be used to assist the sailors in making better judgement about the tell tail changes during sailing. 展开更多
关键词 tell tail sailboat classification deep learning
下载PDF
Comprehensive understanding of glioblastoma molecular phenotypes:classification,characteristics,and transition
6
作者 Can Xu Pengyu Hou +7 位作者 Xiang Li Menglin Xiao Ziqi Zhang Ziru Li Jianglong Xu Guoming Liu Yanli Tan Chuan Fang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第5期363-381,共19页
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le... Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators. 展开更多
关键词 GLIOBLASTOMA molecular phenotype classification CHARACTERISTIC mesenchymal transition
下载PDF
Depression Intensity Classification from Tweets Using Fast Text Based Weighted Soft Voting Ensemble
7
作者 Muhammad Rizwan Muhammad Faheem Mushtaq +5 位作者 Maryam Rafiq Arif Mehmood Isabel de la Torre Diez Monica Gracia Villar Helena Garay Imran Ashraf 《Computers, Materials & Continua》 SCIE EI 2024年第2期2047-2066,共20页
Predicting depression intensity from microblogs and social media posts has numerous benefits and applications,including predicting early psychological disorders and stress in individuals or the general public.A major ... Predicting depression intensity from microblogs and social media posts has numerous benefits and applications,including predicting early psychological disorders and stress in individuals or the general public.A major challenge in predicting depression using social media posts is that the existing studies do not focus on predicting the intensity of depression in social media texts but rather only perform the binary classification of depression and moreover noisy data makes it difficult to predict the true depression in the social media text.This study intends to begin by collecting relevant Tweets and generating a corpus of 210000 public tweets using Twitter public application programming interfaces(APIs).A strategy is devised to filter out only depression-related tweets by creating a list of relevant hashtags to reduce noise in the corpus.Furthermore,an algorithm is developed to annotate the data into three depression classes:‘Mild,’‘Moderate,’and‘Severe,’based on International Classification of Diseases-10(ICD-10)depression diagnostic criteria.Different baseline classifiers are applied to the annotated dataset to get a preliminary idea of classification performance on the corpus.Further FastText-based model is applied and fine-tuned with different preprocessing techniques and hyperparameter tuning to produce the tuned model,which significantly increases the depression classification performance to an 84%F1 score and 90%accuracy compared to baselines.Finally,a FastText-based weighted soft voting ensemble(WSVE)is proposed to boost the model’s performance by combining several other classifiers and assigning weights to individual models according to their individual performances.The proposed WSVE outperformed all baselines as well as FastText alone,with an F1 of 89%,5%higher than FastText alone,and an accuracy of 93%,3%higher than FastText alone.The proposed model better captures the contextual features of the relatively small sample class and aids in the detection of early depression intensity prediction from tweets with impactful performances. 展开更多
关键词 Depression classification deep learning FastText machine learning
下载PDF
Classification and rating of disintegrated dolomite strata for slope stability analysis
8
作者 Wenlian Liu Xinyue Gong +3 位作者 Jiaxing Dong Hanhua Xu Peixuan Dai Shengwei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2552-2562,共11页
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin... Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes. 展开更多
关键词 Disintegrated dolomite slope Basic quality(BQ) Slope stability probability classification (SSPC) Rock mass quality classification Limit equilibrium method(LEM)
下载PDF
Classification of congenital cataracts based on multidimensional phenotypes and its association with visual outcomes
9
作者 Yuan Tan Ying-Shi Zou +8 位作者 Ying-Lin Yu Le-Yi Hu Ting Zhang Hui Chen Ling Jin Duo-Ru Lin Yi-Zhi Liu Hao-Tian Lin Zhen-Zhen Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期473-479,共7页
●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patient... ●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts. 展开更多
关键词 classification congenital cataract PHENOTYPE visual acuity cluster analysis
下载PDF
Longitudinal investigation of mineral composition in human milk and its correlation with infant anthropometric outcomes among Tibetan mother-infant dyads during the first 6 months postpartum
10
作者 Xiaomei Zhang Yaling Wang +3 位作者 Junying Zhao Weicang Qiao Yanpin Liu Lijun Chen 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2857-2865,共9页
Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle... Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle.This study longitudinally investigated the relationship between the mineral composition in human milk and the Z-scores of infants among Tibetan mother-infant dyads during their first 6 months postpartum through a prospective cohort study.The results show that the minerals of Na,Mg,K,Ca,Cu,Zn,and Se were of higher levels in colostrum than other lactation stages.Several minerals were below the recommended values for infants according to Chinese dietary guidelines.Besides,a large proportion of infant Z-scores were below-2 as lactation period continued.Multivariate statistical analysis revealed that classifications and correlations in varying degrees were observed between minerals in human milk and infant Z-scores.These findings will be advantageous for research upon Chinese early nutrition and progress of tailor-made infant formula. 展开更多
关键词 Tibetan mother-infant dyads Minerals Z-SCORES classification and correlation Breastfeeding
下载PDF
Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
11
作者 Kunqi Huang Yiran Lin +1 位作者 Yun Lai Xiaozhou Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期295-301,共7页
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature... Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials. 展开更多
关键词 multi-label classification learning nonlinear phononic crystals inverse design
下载PDF
Improving Generalization for Hyperspectral Image Classification:The Impact of Disjoint Sampling on Deep Models
12
作者 Muhammad Ahmad Manuel Mazzara +2 位作者 Salvatore Distefano Adil Mehmood Khan Hamad Ahmed Altuwaijri 《Computers, Materials & Continua》 SCIE EI 2024年第10期503-532,共30页
Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art(SOTA)models e.g.,Attention Graph and Vision Transformer.When training,validation,and test sets overlap or share data,it introduces... Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art(SOTA)models e.g.,Attention Graph and Vision Transformer.When training,validation,and test sets overlap or share data,it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples.This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification(HSIC).By separating training,validation,and test data without overlap,the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.Experiments demonstrate the approach significantly improves a model’s generalization compared to alternatives that include training and validation data in test data(A trivial approach involves testing the model on the entire Hyperspectral dataset to generate the ground truth maps.This approach produces higher accuracy but ultimately results in low generalization performance).Disjoint sampling eliminates data leakage between sets and provides reliable metrics for benchmarking progress in HSIC.Disjoint sampling is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.Overall,with the disjoint test set,the performance of the deep models achieves 96.36%accuracy on Indian Pines data,99.73%on Pavia University data,98.29%on University of Houston data,99.43%on Botswana data,and 99.88%on Salinas data. 展开更多
关键词 Hyperspectral image classification disjoint sampling Graph CNN spatial-spectral transformer
下载PDF
Effective separation of coal gasification fine slag: Role of classification and ultrasonication in enhancing flotation
13
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Zhen Li Mengyan Cheng Xiaoyi Chen Tianhao Nan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期867-880,共14页
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ... Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect. 展开更多
关键词 Coal gasification fine slag Size classification Ultrasonic pretreatment FLOTATION Carbon recovery
下载PDF
A New Algorithm of Rain Type Classification for GPM Dual-Frequency Precipitation Radar in Summer Tibetan Plateau
14
作者 Yunfei FU Liu YANG +4 位作者 Zhenhao WU Peng ZHANG Songyan GU Lin CHEN Sun NAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2093-2111,共19页
In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2... In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%). 展开更多
关键词 satellite precipitation radar rain type classification method Tibetan Plateau strong convective precipitation
下载PDF
MDTCNet:Multi-Task Classifications Network and TCNN for Direction of Arrival Estimation
15
作者 Yu Jiarun Wang Yafeng 《China Communications》 SCIE CSCD 2024年第10期148-166,共19页
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i... The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods. 展开更多
关键词 DoA estimation MDTCNet millimeter wave system multi-task classifications model regression model
下载PDF
Improving the Effectiveness of Image Classification Structural Methods by Compressing the Description According to the Information Content Criterion
16
作者 Yousef Ibrahim Daradkeh Volodymyr Gorokhovatskyi +1 位作者 Iryna Tvoroshenko Medien Zeghid 《Computers, Materials & Continua》 SCIE EI 2024年第8期3085-3106,共22页
The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of ... The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of object and etalon descriptions while maintaining the required level of classification efficiency.The class to be recognized is represented by an infinite set of images obtained from the etalon by applying arbitrary geometric transformations.It is proposed to reduce the descriptions for the etalon database by selecting the most significant descriptor components according to the information content criterion.The informativeness of an etalon descriptor is estimated by the difference of the closest distances to its own and other descriptions.The developed method determines the relevance of the full description of the recognized object with the reduced description of the etalons.Several practical models of the classifier with different options for establishing the correspondence between object descriptors and etalons are considered.The results of the experimental modeling of the proposed methods for a database including images of museum jewelry are presented.The test sample is formed as a set of images from the etalon database and out of the database with the application of geometric transformations of scale and rotation in the field of view.The practical problems of determining the threshold for the number of votes,based on which a classification decision is made,have been researched.Modeling has revealed the practical possibility of tenfold reducing descriptions with full preservation of classification accuracy.Reducing the descriptions by twenty times in the experiment leads to slightly decreased accuracy.The speed of the analysis increases in proportion to the degree of reduction.The use of reduction by the informativeness criterion confirmed the possibility of obtaining the most significant subset of features for classification,which guarantees a decent level of accuracy. 展开更多
关键词 Description reduction description relevance DESCRIPTOR image classification information content keypoint processing speed
下载PDF
Classification and a decade-long follow-up of rat bite injuries in the nasal region
17
作者 Chu-Hsin Chen Yahong Chen +1 位作者 Peng Xu Kai Liu 《Chinese Journal of Plastic and Reconstructive Surgery》 2024年第1期28-33,共6页
Background:Nasal defects due to rat bites are frequently encountered in rural regions of China.In addition to serving as disease vectors,rats can also inflict bite injuries.In this study,we delineated the characterist... Background:Nasal defects due to rat bites are frequently encountered in rural regions of China.In addition to serving as disease vectors,rats can also inflict bite injuries.In this study,we delineated the characteristics of rat bite injuries in the nasal region and discussed the clinical features observed during a 10-year follow-up period.Methods:We retrospectively reviewed hospital records for patients admitted due to rat bites.This study outlines the demographics,clinical features,and follow-up outcomes supported by comprehensive photo documentation of the patients’progress.Results:Twenty-five patients,with a mean age of 29 years,were admitted due to rat bites.Treatment was provided for three distinct types of injuries:nasal tip defect(type Ⅰ),nasal defect(type Ⅱ),and full-thickness nasal defect with loss of surrounding tissues(type Ⅲ).All patients recovered fully.Conclusions:The treatment for rat bites should be based on the wound type.The long-term follow-up outcomes are more favorable when fewer subunits of the nose affected.We recommend early surgical intervention,along with psychological therapy,to prevent interference with growth and development. 展开更多
关键词 Rat bite Wound classification Nasal reconstruction
下载PDF
A deep learning fusion model for accurate classification of brain tumours in Magnetic Resonance images
18
作者 Nechirvan Asaad Zebari Chira Nadheef Mohammed +8 位作者 Dilovan Asaad Zebari Mazin Abed Mohammed Diyar Qader Zeebaree Haydar Abdulameer Marhoon Karrar Hameed Abdulkareem Seifedine Kadry Wattana Viriyasitavat Jan Nedoma Radek Martinek 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期790-804,共15页
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods... Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly. 展开更多
关键词 brain tumour deep learning feature fusion model MRI images multi‐classification
下载PDF
Performance Comparison of Vision Transformer- and CNN-Based Image Classification Using Cross Entropy: A Preliminary Application to Lung Cancer Discrimination from CT Images
19
作者 Eri Matsuyama Haruyuki Watanabe Noriyuki Takahashi 《Journal of Biomedical Science and Engineering》 2024年第9期157-170,共14页
This study evaluates the performance and reliability of a vision transformer (ViT) compared to convolutional neural networks (CNNs) using the ResNet50 model in classifying lung cancer from CT images into four categori... This study evaluates the performance and reliability of a vision transformer (ViT) compared to convolutional neural networks (CNNs) using the ResNet50 model in classifying lung cancer from CT images into four categories: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), large cell carcinoma (LULC), and normal. Although CNNs have made significant advancements in medical imaging, their limited capacity to capture long-range dependencies has led to the exploration of ViTs, which leverage self-attention mechanisms for a more comprehensive global understanding of images. The study utilized a dataset of 748 lung CT images to train both models with standardized input sizes, assessing their performance through conventional metrics—accuracy, precision, recall, F1 score, specificity, and AUC—as well as cross entropy, a novel metric for evaluating prediction uncertainty. Both models achieved similar accuracy rates (95%), with ViT demonstrating a slight edge over ResNet50 in precision and F1 scores for specific classes. However, ResNet50 exhibited higher recall for LULC, indicating fewer missed cases. Cross entropy analysis showed that the ViT model had lower average uncertainty, particularly in the LUAD, Normal, and LUSC classes, compared to ResNet50. This finding suggests that ViT predictions are generally more reliable, though ResNet50 performed better for LULC. The study underscores that accuracy alone is insufficient for model comparison, as cross entropy offers deeper insights into the reliability and confidence of model predictions. The results highlight the importance of incorporating cross entropy alongside traditional metrics for a more comprehensive evaluation of deep learning models in medical image classification, providing a nuanced understanding of their performance and reliability. While the ViT outperformed the CNN-based ResNet50 in lung cancer classification based on cross-entropy values, the performance differences were minor and may not hold clinical significance. Therefore, it may be premature to consider replacing CNNs with ViTs in this specific application. 展开更多
关键词 Lung Cancer classification Vision Transformers Convolutional Neural Networks Cross Entropy Deep Learning
下载PDF
Development of a novel staging classification for Siewert Ⅱ adenocarcinoma of the esophagogastric junction after neoadjuvant chemotherapy
20
作者 Jian Zhang Hao Liu +1 位作者 Hang Yu Wei-Xiang Xu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2541-2554,共14页
BACKGROUND Stage classification for Siewert Ⅱ adenocarcinoma of the esophagogastric junction(AEG)treated with neoadjuvant chemotherapy(NAC)has not been established.AIM To investigate the optimal stage classification ... BACKGROUND Stage classification for Siewert Ⅱ adenocarcinoma of the esophagogastric junction(AEG)treated with neoadjuvant chemotherapy(NAC)has not been established.AIM To investigate the optimal stage classification for Siewert Ⅱ AEG with NAC.METHODS A nomogram was established based on Cox regression model that analyzed variables associated with overall survival(OS)and disease-specific survival(DSS).The nomogram performance in terms of discrimination and calibration ability was evaluated using the likelihood-ratio test,Akaike information criterion,Harrell concordance index,time-receiver operating characteristic curve,and decision curve analysis.RESULTS Data from 725 patients with Siewert type Ⅱ AEG who underwent neoadjuvant therapy and gastrectomy were obtained from the Surveillance,Epidemiology,and End Results database.Univariate and multivariate analyses revealed that sex,marital status,race,ypT stage,and ypN stage were independent prognostic factors of OS,whereas sex,race,ypT stage,and ypN stage were independent prognostic factors for DSS.These factors were incorporated into the OS and DSS nomograms.Our novel nomogram model performed better in terms of OS and DSS prediction compared to the 8th American Joint Committee of Cancer pathological staging system for esophageal and gastric cancer.Finally,a user-friendly web application was developed for clinical use.CONCLUSION The nomogram established specifically for patients with Siewert type Ⅱ AEG receiving NAC demonstrated good prognostic performance.Validation using external data is warranted before its widespread clinical application. 展开更多
关键词 Stage classification PROGNOSIS Esophagogastric junction cancer Neoadjuvant chemotherapy Siewert type
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部