Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c...Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.展开更多
Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic alg...Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic algorithm with resampling method is adopted to obtain reducts with good generalization ability. Second, Multiple BP neural networks based on different reducts are built as base classifiers. According to the idea of selective ensemble, the neural network ensemble with best generalization ability can be found by search strategies. Finally, classification based on neural network ensemble is implemented by combining the predictions of component networks with voting. The method has been verified in the experiment of remote sensing image and five UCI datasets classification. Compared with conventional ensemble feature selection algorithms, it costs less time and lower computing complexity, and the classification accuracy is satisfactory.展开更多
Autism Spectrum Disorder(ASD)requires a precise diagnosis in order to be managed and rehabilitated.Non-invasive neuroimaging methods are disease markers that can be used to help diagnose ASD.The majority of available ...Autism Spectrum Disorder(ASD)requires a precise diagnosis in order to be managed and rehabilitated.Non-invasive neuroimaging methods are disease markers that can be used to help diagnose ASD.The majority of available techniques in the literature use functional magnetic resonance imaging(fMRI)to detect ASD with a small dataset,resulting in high accuracy but low generality.Traditional supervised machine learning classification algorithms such as support vector machines function well with unstructured and semi structured data such as text,images,and videos,but their performance and robustness are restricted by the size of the accompanying training data.Deep learning on the other hand creates an artificial neural network that can learn and make intelligent judgments on its own by layering algorithms.It takes use of plentiful low-cost computing and many approaches are focused with very big datasets that are concerned with creating far larger and more sophisticated neural networks.Generative modelling,also known as Generative Adversarial Networks(GANs),is an unsupervised deep learning task that entails automatically discovering and learning regularities or patterns in input data in order for the model to generate or output new examples that could have been drawn from the original dataset.GANs are an exciting and rapidly changingfield that delivers on the promise of generative models in terms of their ability to generate realistic examples across a range of problem domains,most notably in image-to-image translation tasks and hasn't been explored much for Autism spectrum disorder prediction in the past.In this paper,we present a novel conditional generative adversarial network,or cGAN for short,which is a form of GAN that uses a generator model to conditionally generate images.In terms of prediction and accuracy,they outperform the standard GAN.The pro-posed model is 74%more accurate than the traditional methods and takes only around 10 min for training even with a huge dataset.展开更多
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ...The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.展开更多
COVID-19 is a global pandemic disease,which results from a dangerous coronavirus attack,and spreads aggressively through close contacts with infected people and artifacts.So far,there is not any prescribed line of tre...COVID-19 is a global pandemic disease,which results from a dangerous coronavirus attack,and spreads aggressively through close contacts with infected people and artifacts.So far,there is not any prescribed line of treatment for COVID-19 patients.Measures to control the disease are very limited,partly due to the lack of knowledge about technologies which could be effectively used for early detection and control the disease.Early detection of positive cases is critical in preventing further spread,achieving the herd immunity,and saving lives.Unfortunately,so far we do not have effective toolkits to diagnose very early detection of the disease.Recent research findings have suggested that radiology images,such as X-rays,contain significant information to detect the presence of COVID-19 virus in early stages.However,to detect the presence of the disease in in very early stages from the X-ray images by the naked eye is not possible.Artificial Intelligence(AI)techniques,machine learning in particular,are known to be very helpful in accurately diagnosing many diseases from radiology images.This paper proposes an automatic technique to classify COVID-19 patients from their computerized tomography(CT)scan images.The technique is known as Advanced Inception based Recurrent Residual Convolution Neural Network(AIRRCNN),which uses machine learning techniques for classifying data.We focus on the Advanced Inception based Recurrent Residual Convolution Neural Network,because we do not find it being used in the literature.Also,we conduct principal component analysis,which is used for dimensional deduction.Experimental results of our method have demonstrated an accuracy of about 99%,which is regarded to be very efficient.展开更多
Early detection of Parkinson’s Disease(PD)using the PD patients’voice changes would avoid the intervention before the identification of physical symptoms.Various machine learning algorithms were developed to detect ...Early detection of Parkinson’s Disease(PD)using the PD patients’voice changes would avoid the intervention before the identification of physical symptoms.Various machine learning algorithms were developed to detect PD detection.Nevertheless,these ML methods are lack in generalization and reduced classification performance due to subject overlap.To overcome these issues,this proposed work apply graph long short term memory(GLSTM)model to classify the dynamic features of the PD patient speech signal.The proposed classification model has been further improved by implementing the recurrent neural network(RNN)in batch normalization layer of GLSTM and optimized with adaptive moment estimation(ADAM)on network hidden layer.To consider the importance of feature engineering,this proposed system use Linear Discriminant analysis(LDA)for dimensionality reduction and SparseAuto-Encoder(SAE)for extracting the dynamic speech features.Based on the computation of energy content transited from unvoiced to voice(onset)and voice to voiceless(offset),dynamic features are measured.The PD datasets is evaluated under 10 fold cross validation without sample overlap.The proposed smart PD detection method called RNN-GLSTM-ADAM is numerically experimented with persistent phonations in terms of accuracy,sensitivity,and specificity andMatthew correlation coefficient.The evaluated result of RNN-GLSTM-ADAM extremely improves the PD detection accuracy than static feature based conventional ML and DL approaches.展开更多
基金Supported by the National Natural Science Foundation of China(No.61602191,61672521,61375037,61473291,61572501,61572536,61502491,61372107,61401167)the Natural Science Foundation of Fujian Province(No.2016J01308)+3 种基金the Scientific and Technology Funds of Quanzhou(No.2015Z114)the Scientific and Technology Funds of Xiamen(No.3502Z20173045)the Promotion Program for Young and Middle aged Teacher in Science and Technology Research of Huaqiao University(No.ZQN-PY418,ZQN-YX403)the Scientific Research Funds of Huaqiao University(No.16BS108)
文摘Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.
基金supported by the National High-Tech Research and Development Plan of China (No.2007AA04Z224)the National Natural Science Foundation of China (No.60775047, 60835004)
文摘Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic algorithm with resampling method is adopted to obtain reducts with good generalization ability. Second, Multiple BP neural networks based on different reducts are built as base classifiers. According to the idea of selective ensemble, the neural network ensemble with best generalization ability can be found by search strategies. Finally, classification based on neural network ensemble is implemented by combining the predictions of component networks with voting. The method has been verified in the experiment of remote sensing image and five UCI datasets classification. Compared with conventional ensemble feature selection algorithms, it costs less time and lower computing complexity, and the classification accuracy is satisfactory.
文摘Autism Spectrum Disorder(ASD)requires a precise diagnosis in order to be managed and rehabilitated.Non-invasive neuroimaging methods are disease markers that can be used to help diagnose ASD.The majority of available techniques in the literature use functional magnetic resonance imaging(fMRI)to detect ASD with a small dataset,resulting in high accuracy but low generality.Traditional supervised machine learning classification algorithms such as support vector machines function well with unstructured and semi structured data such as text,images,and videos,but their performance and robustness are restricted by the size of the accompanying training data.Deep learning on the other hand creates an artificial neural network that can learn and make intelligent judgments on its own by layering algorithms.It takes use of plentiful low-cost computing and many approaches are focused with very big datasets that are concerned with creating far larger and more sophisticated neural networks.Generative modelling,also known as Generative Adversarial Networks(GANs),is an unsupervised deep learning task that entails automatically discovering and learning regularities or patterns in input data in order for the model to generate or output new examples that could have been drawn from the original dataset.GANs are an exciting and rapidly changingfield that delivers on the promise of generative models in terms of their ability to generate realistic examples across a range of problem domains,most notably in image-to-image translation tasks and hasn't been explored much for Autism spectrum disorder prediction in the past.In this paper,we present a novel conditional generative adversarial network,or cGAN for short,which is a form of GAN that uses a generator model to conditionally generate images.In terms of prediction and accuracy,they outperform the standard GAN.The pro-posed model is 74%more accurate than the traditional methods and takes only around 10 min for training even with a huge dataset.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51504085)the Natural Science Foundation for Returness of Heilongjiang Province of China(Grant No.LC2017026).
文摘The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under Grant No.GCV19-49-1441.
文摘COVID-19 is a global pandemic disease,which results from a dangerous coronavirus attack,and spreads aggressively through close contacts with infected people and artifacts.So far,there is not any prescribed line of treatment for COVID-19 patients.Measures to control the disease are very limited,partly due to the lack of knowledge about technologies which could be effectively used for early detection and control the disease.Early detection of positive cases is critical in preventing further spread,achieving the herd immunity,and saving lives.Unfortunately,so far we do not have effective toolkits to diagnose very early detection of the disease.Recent research findings have suggested that radiology images,such as X-rays,contain significant information to detect the presence of COVID-19 virus in early stages.However,to detect the presence of the disease in in very early stages from the X-ray images by the naked eye is not possible.Artificial Intelligence(AI)techniques,machine learning in particular,are known to be very helpful in accurately diagnosing many diseases from radiology images.This paper proposes an automatic technique to classify COVID-19 patients from their computerized tomography(CT)scan images.The technique is known as Advanced Inception based Recurrent Residual Convolution Neural Network(AIRRCNN),which uses machine learning techniques for classifying data.We focus on the Advanced Inception based Recurrent Residual Convolution Neural Network,because we do not find it being used in the literature.Also,we conduct principal component analysis,which is used for dimensional deduction.Experimental results of our method have demonstrated an accuracy of about 99%,which is regarded to be very efficient.
文摘Early detection of Parkinson’s Disease(PD)using the PD patients’voice changes would avoid the intervention before the identification of physical symptoms.Various machine learning algorithms were developed to detect PD detection.Nevertheless,these ML methods are lack in generalization and reduced classification performance due to subject overlap.To overcome these issues,this proposed work apply graph long short term memory(GLSTM)model to classify the dynamic features of the PD patient speech signal.The proposed classification model has been further improved by implementing the recurrent neural network(RNN)in batch normalization layer of GLSTM and optimized with adaptive moment estimation(ADAM)on network hidden layer.To consider the importance of feature engineering,this proposed system use Linear Discriminant analysis(LDA)for dimensionality reduction and SparseAuto-Encoder(SAE)for extracting the dynamic speech features.Based on the computation of energy content transited from unvoiced to voice(onset)and voice to voiceless(offset),dynamic features are measured.The PD datasets is evaluated under 10 fold cross validation without sample overlap.The proposed smart PD detection method called RNN-GLSTM-ADAM is numerically experimented with persistent phonations in terms of accuracy,sensitivity,and specificity andMatthew correlation coefficient.The evaluated result of RNN-GLSTM-ADAM extremely improves the PD detection accuracy than static feature based conventional ML and DL approaches.