期刊文献+
共找到13,007篇文章
< 1 2 250 >
每页显示 20 50 100
Changes in classified precipitation in the urban, suburban, and mountain areas of Beijing 被引量:1
1
作者 YUAN Yu-Feng ZHAI Pan-Mao +1 位作者 LI Jian CHEN Yang 《Advances in Climate Change Research》 SCIE CSCD 2017年第4期279-285,共7页
In this paper, based on hourly precipitation observations in 1977e2013 in the Beijing area, China, hourly precipitation in summer (June?August) is classified into three categories: light (below the 50th percentile val... In this paper, based on hourly precipitation observations in 1977e2013 in the Beijing area, China, hourly precipitation in summer (June?August) is classified into three categories: light (below the 50th percentile values), moderate (the 50th to 95th percentile values), and heavy (above the 95th percentile values). Results reveal that both light and moderate precipitation decreased significantly during the research period and thereby caused the decrease in summer totals. By contrast, pronounced trends failed to be detected in the heavy category. Since 2004, the contribution of heavy rainfall to the summer total precipitation in the urban area increased as compared to the suburban area, which is opposite to light rainfall. There are obvious differences in the diurnal variations of classified precipitation. Light precipitation shows a double peak structure in the early morning and at night, while moderate and heavy rainfall show a single peak at night. Light precipitation at the early morning peak time decreased significantly in the whole Beijing area. Compared with the suburban area, light precipitation in the urban area occurred less frequently whereas heavy precipitation occurred more frequently at evening peak time after 2004. The asymmetry of the rainfall is obvious, especially, for heavy precipitation. The asymmetry of heavy precipitation events in the urban area exhibits a significant increasing trend. 展开更多
关键词 Hourly PRECIPITATION classified PRECIPITATION DIURNAL variation Asymmetry BEIJING
下载PDF
REMOTE SENSING IMAGE CODING METHOD COMBINING WAVELET TRANSFORM WITH CLASSIFIED VECTOR QUANTIZATION
2
作者 张正阳 吴成柯 《Chinese Journal of Aeronautics》 SCIE EI CSCD 1998年第3期55-60,共6页
A new remote sensing image coding scheme based on the wavelet transform and classified vector quantization (CVQ) is proposed. The original image is first decomposed into a hierarchy of 3 layers including 10 subimages ... A new remote sensing image coding scheme based on the wavelet transform and classified vector quantization (CVQ) is proposed. The original image is first decomposed into a hierarchy of 3 layers including 10 subimages by DWT. The lowest frequency subimage is compressed by scalar quantization and ADPCM. The high frequency subimages are compressed by CVQ to utilize the similarity among different resolutions while improving the edge quality and reducing computational complexity. The experimental results show that the proposed scheme has a better performance than JPEG, and a PSNR of reconstructed image is 31~33 dB with a rate of 0.2 bpp. 展开更多
关键词 remote sensing image coding wavelet transform classified vector quantization
下载PDF
Classified recognition for metal magnetic memory signals of welding defects in API 5L X65 pipeline steel
3
作者 张建军 邸新杰 +2 位作者 金宝 郭晓疆 李午申 《China Welding》 EI CAS 2012年第3期27-32,共6页
Feature extraction and selection from signals is a key issue for metal magnetic memory testing technique. In order to realize the classification of metal magnetic memory signals of welding defects, four fractal analys... Feature extraction and selection from signals is a key issue for metal magnetic memory testing technique. In order to realize the classification of metal magnetic memory signals of welding defects, four fractal analysis methods, such as box- counting, detrended fluctuation, minimal cover and rescaled-range analysis, were used to extract the feature signal after the original metal magnet memory signal was de-noising and differential processing, then the Karhunen-Lo^e transformation was adopted as classification tool to identify the defect signals. The result shows that this study can provide an efficient classification method for metal magnetic memory signal of welding defects. 展开更多
关键词 welding defect metal magnetic memory fractal analysis classified recognition
下载PDF
Investigation of Inhabitants' Wishes on Classified Collection of Waste in Wanghua District of Fushun
4
作者 Yanfeng Zhao Yafan Wang 《Meteorological and Environmental Research》 CAS 2013年第9期19-21,共3页
In order to disclose present situation and problem of classified collection of municipal solid waste in Wanghua District of Fushun and ana- lyze its practicability, questionnaire was designed in this paper, random res... In order to disclose present situation and problem of classified collection of municipal solid waste in Wanghua District of Fushun and ana- lyze its practicability, questionnaire was designed in this paper, random research was adopted in Wanghua District, and statistic analysis of investi- gation result was conducted. This investigation could provide basis for popularizing classified collection of municipal solid waste in the whole nation. 展开更多
关键词 Municipal solid waste classified collection Questionnaire investigation Residents' wishes China
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
5
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
Phytodiversity and Vulnerability of Protected Areas in Burkina Faso: Case of Péni Classified Forest
6
作者 Nebnoma Romaric Tiendrébeogo Paulin Ouoba +5 位作者 Brigitte Bastide Yempabou Hermann Ouoba Blandine Marie Ivette Nacoulma Irénée Somda Bismarck Hassan Nacro Issiaka Joseph Boussim 《Journal of Geoscience and Environment Protection》 2022年第12期204-223,共20页
Protected areas contain most of Burkina Faso’s plant biodiversity which confer different benefits for the communities. However, the composition of some of them remains unknown. In a context of overexploitation and cl... Protected areas contain most of Burkina Faso’s plant biodiversity which confer different benefits for the communities. However, the composition of some of them remains unknown. In a context of overexploitation and climate change, it is important to have a detailed knowledge of the vegetation of forests that have not been studied, such as Péni Classified Forest (PCF) to develop better preservation protocols. The aim of this study is to contribute to the knowledge of the flora of Burkina Faso. Phytosociological surveys were carried out in 213 plots, have identified 475 species distributed in 321 genera and 87 families. We identified during this study 201 woody species representing 38% of the woody flora of Burkina Faso. 64% of this flora is confined to shrub savannahs and 61% to tree savannahs. Among the vegetation units, shrub savannahs and tree savannahs have respectively 56.21% and 44.67% of very rare species. Poaceae (11.90%), Fabaceae-Faboideae (11.27%) and Rubiaceae (6.26%) are the most dominant families. The dominant biological types of the flora are phanerophytes (42.32%) and therophytes (30.32%), and Sudanian species (20.63%) are the best represented. Logging is the most frequent disturbance factor (100%) in the PCF. The PCF is a particular ecosystem with a great diversity but subject to many disturbances. Actions to strengthen its protection are necessary. 展开更多
关键词 BIODIVERSITY ECOLOGY Anthropic Pressures classified Forests Burkina Faso
下载PDF
On the Application of Classified English Teaching in Vocational School
7
作者 王燕侬 《海外英语》 2012年第8X期93-95,共3页
Over the past years,with the increasing enrollment of high school,vocational schools are facing great challenge for their existence and development,concerning the low proficiency of the students and great gap among th... Over the past years,with the increasing enrollment of high school,vocational schools are facing great challenge for their existence and development,concerning the low proficiency of the students and great gap among them.The traditional English teaching mode which employs the same teaching contents,same teaching methods and teaching aims cannot satisfy students with different English levels.Therefore,in order to change the present situation,this paper proposes a new English teaching mode:classified English teaching.In the new mode,different students will be taught by different materials,different methods and with different aims.It can stimulate students'enthusiasm in English learning,and make every student develop appropriately. 展开更多
关键词 classified ENGLISH TEACHING VOCATIONAL SCHOOL appl
下载PDF
Construction of the Forecast System of Classified Severe Convection Weather in Qinghai Province Based on Ingredients-based Method
8
作者 Qin GUAN Xinfu YAO +3 位作者 Qingping LI Jinhai LI Yao HU Bianbian ZHANG 《Meteorological and Environmental Research》 CAS 2022年第5期47-55,共9页
Based on the data of the cases of severe convection weather such as hail,thunderstorm(thunderstorm gale)and short-time heavy precipitation in recent 10 years,the spatial and temporal distribution characteristics of di... Based on the data of the cases of severe convection weather such as hail,thunderstorm(thunderstorm gale)and short-time heavy precipitation in recent 10 years,the spatial and temporal distribution characteristics of different types of severe convection weather were analyzed.The results show that the frequency of severe convection weather tended to increase,of which short-time heavy precipitation and thunderstorm weather rose,and hail and thunderstorm gale weather decreased.Severe convection weather began to extend in late spring and early autumn.Typical cases were selected to analyze the evolution mechanism,and the conceptual models of severe convective weather caused by cold advection forcing,warm advection forcing and baroclinic frontogenesis were obtained.The key predictors for the potential prediction of severe convection weather were proposed,such as CAPE(convective available potential energy)for hail weather,UH index(maximum ascending helicity)for thunderstorm gale and PWV(precipitable water vapor)for short-time heavy precipitation.ERA5 data were used to get the forecast threshold of the key factor of classified severe convection weather,and it was verified that the threshold was available.Meanwhile,the causes of the error of failure cases were analyzed.For instance,the larger deviation of CAPE was caused by the 2 m deviation of temperature.Supplementary correction method and threshold were given to provide a reference for the objective forecast and early warning of severe convection weather. 展开更多
关键词 classified strong convection Convective available potential energy Rising helicity Atmospheric precipitable water Threshold
下载PDF
The Certification Labels of Alcoholic Drinks Products Will Be Classified into Three Kinds
9
《China Standardization》 2006年第2期3-,共1页
关键词 HACCP The Certification Labels of Alcoholic Drinks Products Will Be classified into Three Kinds BE
下载PDF
Intrusion Detection System Using Classification Algorithms with Feature Selection Mechanism over Real-Time Data Traffic
10
作者 Gulab Sah Sweety Singh Subhasish Banerjee 《China Communications》 SCIE CSCD 2024年第9期292-320,共29页
The key objective of intrusion detection systems(IDS)is to protect the particular host or network by investigating and predicting the network traffic as an attack or normal.These IDS uses many methods of machine learn... The key objective of intrusion detection systems(IDS)is to protect the particular host or network by investigating and predicting the network traffic as an attack or normal.These IDS uses many methods of machine learning(ML)to learn from pastexperience attack i.e.signatures based and identify the new ones.Even though these methods are effective,but they have to suffer from large computational costs due to considering all the traffic features,together.Moreover,emerging technologies like the Internet of Things(Io T),big data,etc.are getting advanced day by day;as a result,network traffics are also increasing rapidly.Therefore,the issue of computational cost needs to be addressed properly.Thus,in this research,firstly,the ML methods have been used with the feature selection technique(FST)to reduce the number of features by picking out only the important ones from NSL-KDD,CICIDS2017,and CIC-DDo S2019datasets later that helped to build IDSs with lower cost but with the higher performance which would be appropriate for vast scale network.The experimental result demonstrated that the proposed model i.e.Decision tree(DT)with Recursive feature elimination(RFE)performs better than other classifiers with RFE in terms of accuracy,specificity,precision,sensitivity,F1-score,and G-means on the investigated datasets. 展开更多
关键词 CICIDS2017 dataset classifiERS IDS ML NSL KDD dataset RFE
下载PDF
Bond Classified
11
作者 龚蓓 《音乐爱好者》 2004年第7期54-54,共1页
扬威国际乐坛的女子梦幻四重奏Bond,继《Born》《Shine》之后,DECCA公司于今年6月又在全球推出了她们的全新大碟《Classified》,其中收录了十二首新作:1.爆发(Explosive),2.Scorchio,3.天鹅湖(MidnightGarden),4.摇篮曲(Lull... 扬威国际乐坛的女子梦幻四重奏Bond,继《Born》《Shine》之后,DECCA公司于今年6月又在全球推出了她们的全新大碟《Classified》,其中收录了十二首新作:1.爆发(Explosive),2.Scorchio,3.天鹅湖(MidnightGarden),4.摇篮曲(Lullaby),5.桑巴舞(Samba),6.匈牙利舞曲(Hungarian),7.我将远走高飞(I'11 Fly Away),8.梦之星(Dream Star),9.马刀舞(Highly Strung),10. 展开更多
关键词 BOND classified 古典音乐 音乐教育 演奏技巧
下载PDF
基于Extra Tree Classifier的水质安全建模预测
12
作者 杨丽佳 陈新房 +1 位作者 赵晗清 汪世伟 《电脑与电信》 2024年第6期57-61,共5页
随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测... 随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测及数据分析。本研究目的在于提供一个可靠的模型,以帮助决策者和相关部门更好地监测和维护水质安全,从而保障公众健康和环境可持续发展。 展开更多
关键词 水质安全 Lazy Predict Extra Tree classifier k折交叉验证 机器学习
下载PDF
Using Cross Entropy as a Performance Metric for Quantifying Uncertainty in DNN Image Classifiers: An Application to Classification of Lung Cancer on CT Images
13
作者 Eri Matsuyama Masayuki Nishiki +1 位作者 Noriyuki Takahashi Haruyuki Watanabe 《Journal of Biomedical Science and Engineering》 2024年第1期1-12,共12页
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation... Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. . 展开更多
关键词 Cross Entropy Performance Metrics DNN Image classifiers Lung Cancer Prediction Uncertainty
下载PDF
RefluxClassifier分离细颗粒的技术发展与应用前景
14
作者 马梦绮 张志远 +2 位作者 荆隆隆 方佳豪 李延锋 《有色金属(选矿部分)》 CAS 2024年第1期106-115,共10页
矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的Reflux... 矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的RefluxClassifier(回流分级机,简称RC)作为一种新型重力分选设备进入到矿物加工设备行列。该设备由液固流化床与倾斜通道组成,分为垂直段与倾斜段,具有操作简单、成本低廉和高效节能等优点。据研究,RC因其特殊的结构与工作机理可以有效解决细颗粒分离问题。本文首先归纳了国内外有关RC的理论研究,详细描述了RC倾斜段中颗粒在流体中的运动状态,阐明了倾斜通道内颗粒运动与流体流动特性之间的关系,简要分析了颗粒性质与流体之间的力与速度关系。此外,本文对目前现有RC的水速预测模型(经典动力学模型、经验模型、弱化粒度模型、平衡模型)进行了总结,并综合分析了各模型的适用范围。结合试验案例,介绍了RC在煤炭、黑金属、砂石骨料等领域的应用现状,举例分析不同试验条件下RC对细颗粒回收的分离情况。最后结合我国资源现状与现代设备发展趋势,提出如何深入优化RC分选理论模型、拓展更广阔的应用领域是国内外学者的长期研究目标,并展望RC在工业范围内的全面推广。 展开更多
关键词 Refluxclassifier 细粒回收 重力分选 颗粒运动
下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
15
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
下载PDF
Construction and application of pre-classified smooth semi-supervised twin support vector machine
16
作者 ZHANG Xiaodan QI Hongye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期564-572,共9页
In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabe... In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabeled samples. In S2TSVM, the addition of unlabeled samples can easily cause the classification hyper plane to deviate from the sample points. Then a centerdistance principle is proposed to pre-classify unlabeled samples, and a pre-classified S2TSVM (PS2TSVM) is proposed. Compared with S2TSVM, PS2TSVM not only improves the problem of the samples deviating from the classification hyper plane, but also improves the training speed. Then PS2TSVM is smoothed. After smoothing the model, the pre-classified smooth S2TSVM (PS3TSVM) is obtained, and its convergence is deduced. Finally, nine datasets are selected in the UCI machine learning database for comparison with other types of semi-supervised models. The experimental results show that the proposed PS3TSVM model has better classification results. 展开更多
关键词 SEMI-SUPERVISED TWIN support vector machine (TWSVM) pre-classified center-distance SMOOTH
下载PDF
Realistic Dilemma and Solution of “Vocational Skill Test” under the Background of Enrollment Reform of Classified Examination in Higher Vocational Colleges in Jilin Province
17
作者 Guoxun Zheng Liang Zhao +1 位作者 Ruojin Wang Chengming Wang 《Journal of Contemporary Educational Research》 2021年第12期210-214,共5页
In the process of Higher Vocational classified examination enrollment reform,Jilin Province has adopted a diversified examination enrollment model and“cultural quality test+vocational skill test”evaluation method,an... In the process of Higher Vocational classified examination enrollment reform,Jilin Province has adopted a diversified examination enrollment model and“cultural quality test+vocational skill test”evaluation method,and established the“vocational education college entrance examination”system.This paper analyzes the important role and practical difficulties of“vocational skill test”in Higher Vocational classified examination,studies the existing problems,and puts forward to reasonably divide the proportion of“cultural quality test”and“vocational skill test”,sets diversified admission standards,scientifically sets up the assessment methods and contents of“vocational skill test”,further improves the“cultural quality test+vocational skill test”evaluation method and builds a classified examination and enrollment system more in line with the characteristics of vocational education. 展开更多
关键词 classified enrollment in higher vocational colleges Vocational skill test Vocational education Multiple admission criteria
下载PDF
An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features
18
作者 Saad M.Darwish Abdul Rahman M.Sabri +1 位作者 Dhafar Hamed Abd Adel A.Elzoghabi 《Computer Systems Science & Engineering》 2024年第6期1595-1624,共30页
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient... The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%. 展开更多
关键词 Political articles orientation detection CatBoost classifier multi-level features context-based classification social networks machine learning stylometric features
下载PDF
Mammogram Classification with HanmanNets Using Hanman Transform Classifier
19
作者 Jyoti Dabass Madasu Hanmandlu +1 位作者 Rekha Vig Shantaram Vasikarla 《Journal of Modern Physics》 2024年第7期1045-1067,共23页
Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep infor... Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance. 展开更多
关键词 MAMMOGRAMS ResNet 18 Hanman Transform classifier ABNORMALITY DIAGNOSIS VGG-16 AlexNet GoogleNet HanmanNets
下载PDF
Study on fuzzy method applied in classified groundwater environmental vulnerability degree
20
《Global Geology》 1998年第1期82-82,共1页
关键词 Study on fuzzy method applied in classified groundwater environmental vulnerability degree
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部