To reduce the influences of outliers on support vector machine(SVM) classification problem,a new tangent loss function was constructed.Since the tangent loss function was not smooth in some interval,a smoothing functi...To reduce the influences of outliers on support vector machine(SVM) classification problem,a new tangent loss function was constructed.Since the tangent loss function was not smooth in some interval,a smoothing function was used to approximate it in this interval.According to this loss function,the corresponding tangent SVM(TSVM) was got.The experimental results show that TSVM is less sensitive to outliers than SVM.So the proposed new loss function and TSVM are both effective.展开更多
In lung CT images, the edge of a tumor is frequently fuzzy because of the complex relationship between tumors and tissues, especially in cases that the tumor adheres to the chest and lung in the pathology area. This m...In lung CT images, the edge of a tumor is frequently fuzzy because of the complex relationship between tumors and tissues, especially in cases that the tumor adheres to the chest and lung in the pathology area. This makes the tumor segmentation more difficult. In order to segment tumors in lung CT images accurately, a method based on support vector machine(SVM) and improved level set model is proposed. Firstly, the image is divided into several block units; then the texture, gray and shape features of each block are extracted to construct eigenvector and then the SVM classifier is trained to detect suspicious lung lesion areas; finally, the suspicious edge is extracted as the initial contour after optimizing lesion areas, and the complete tumor segmentation can be obtained by level set model modified with morphological gradient. Experimental results show that this method can efficiently and fast segment the tumors from complex lung CT images with higher accuracy.展开更多
基金National Natural Science Foundations of China(Nos.61272015,11201123)the Scientific Research Foundation for the Doctor of Henan University of Science&Technology,China(No.09001476)School Foundation of Henan University of Science&Technology,China(No.2012QN011)
文摘To reduce the influences of outliers on support vector machine(SVM) classification problem,a new tangent loss function was constructed.Since the tangent loss function was not smooth in some interval,a smoothing function was used to approximate it in this interval.According to this loss function,the corresponding tangent SVM(TSVM) was got.The experimental results show that TSVM is less sensitive to outliers than SVM.So the proposed new loss function and TSVM are both effective.
基金supported by the National Natural Science Foundation of China(No.61261029)Jinchuan Company Research Foundation(No.JCYY2013009)
文摘In lung CT images, the edge of a tumor is frequently fuzzy because of the complex relationship between tumors and tissues, especially in cases that the tumor adheres to the chest and lung in the pathology area. This makes the tumor segmentation more difficult. In order to segment tumors in lung CT images accurately, a method based on support vector machine(SVM) and improved level set model is proposed. Firstly, the image is divided into several block units; then the texture, gray and shape features of each block are extracted to construct eigenvector and then the SVM classifier is trained to detect suspicious lung lesion areas; finally, the suspicious edge is extracted as the initial contour after optimizing lesion areas, and the complete tumor segmentation can be obtained by level set model modified with morphological gradient. Experimental results show that this method can efficiently and fast segment the tumors from complex lung CT images with higher accuracy.