A landslide susceptibility mapping study was performed using dynamic hillslope hydrology. The modified infinite slope stability model that directly includes vadose zone soil moisture(SM) was applied at Cleveland Corra...A landslide susceptibility mapping study was performed using dynamic hillslope hydrology. The modified infinite slope stability model that directly includes vadose zone soil moisture(SM) was applied at Cleveland Corral, California, US and Krishnabhir, Dhading, Nepal. The variable infiltration capacity(VIC-3L) model simulated vadose zone soil moisture and the wetness index hydrologic model simulated groundwater(GW). The GW model predictions had a 75% NASH-Sutcliffe efficiency when compared to California's in-situ GW measurements. The model performed best during the wet season. Using predicted GW and VIC-3L vadose zone SM, the developed landslide susceptibility maps showed very good agreement with mapped landslides at each study region. Previous quasi-dynamic model predictions of Nepal's hazardous areas during extreme rainfall events were enhanced to improve the spatial characterization and provide the timing of hazardous conditions.展开更多
The sorption and phase distribution of 20% ethanol and butanol blended gasoline (E20 and B20) vapours have been examined in soils with varying soil organic matter (SOM) and water contents via laboratory microcosm ...The sorption and phase distribution of 20% ethanol and butanol blended gasoline (E20 and B20) vapours have been examined in soils with varying soil organic matter (SOM) and water contents via laboratory microcosm experiments. The presence of 20% alcohol reduced the sorption of gasoline compounds by soil as well as the mass distribution of the compounds to soil solids. This effect was greater for ethanol than butanol. Compared with the sorption coefficient (Kd) of unblended gasoline compounds, the Kd of E20 gasoline compounds decreased by 54% for pentane, 54% for methylcyclopentane (MCP) and 63% for benzene, while the Kd of B20 gasoline compounds decreased by 39% for pentane, 38% for MCP and 49% for benzene, The retardation factor (R) of E20 gasoline compounds decreased by 53% for pentane, 53% for MCP and 48% for benzene, while the R of B20 gasoline compounds decreased by 39% for pentane, 37% for MCP and 38% for benzene. For all SOM and water contents tested, the Kd and R of all gasoline compounds were in the order of unblended gasoline 〉 B20 〉 E20, indicating that the use of high ethanol volume in gasoline to combat climate change could put the groundwater at greater risk of contamination,展开更多
On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical p...On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical properties for the soil in the slide zone.The soil samples are gravel containing fine particle.Particles larger than 2 mm occupy the main proportion with the content 51.5%--68.5%.The relative content of clay minerals is low.The clay minerals are illite smectite mixed layer and kaolinite,and their relative contents are 6%--13% and 4%-11%,respectively.The main mineral ingredient is quartz and the relative content is over 30%.Therefore,the soil’s hydrophily is poor.The cohesion and internal friction angle are high,causing preferable physical-mechanical features of slide zone soil.On the basis of the obtained data,the landslide stability is evaluated by means of limit equilibrium method.The safety factors are 3.191 and 1.92 respectively under both natural and normal water level conditions.The study results show that the landslide is stable.It can provide the appropriate basis and reference for landslide stability evaluation and landslide control in Tibet.展开更多
Free-air carbon dioxide(CO_(2))enrichment(FACE)experiments provide an opportunity to test models of heat and water flow under novel,controlled situations and eventually allow use of these models for hypothesis evaluat...Free-air carbon dioxide(CO_(2))enrichment(FACE)experiments provide an opportunity to test models of heat and water flow under novel,controlled situations and eventually allow use of these models for hypothesis evaluation.This study assesses whether the United States Department of Agriculture SHAW(Simultaneous Heat and Water)numerical model of vertical one-dimensional soil water flow across the soil-plant-atmosphere continuum is able to adequately represent and explain the effects of increasing atmospheric CO_(2) on soil moisture dynamics in temperate grasslands.Observations in a FACE experiment,the Bio CON(Biodiversity,CO_(2),and Nitrogen)experiment,in Minnesota,USA,were compared with results of vertical soil moisture distribution.Three scenarios represented by different plots were assessed:bare,vegetated with ambient CO_(2),and similarly vegetated with high CO_(2).From the simulations,the bare plot soil was generally the wettest,followed by a drier high-CO_(2) vegetated plot,and the ambient CO_(2) plot was the driest.The SHAW simulations adequately reproduced the expected behavior and showed that vegetation and atmospheric CO_(2) concentration significantly affected soil moisture dynamics.The differences in modeled soil moisture amongst the plots were largely due to transpiration,which was low with high CO_(2).However,the modeled soil moisture only modestly reproduced the observations.Thus,while SHAW is able to replicate and help broadly explain soil moisture dynamics in a FACE experiment,its application for point-and time-specific simulations of soil moisture needs further scrutiny.The typical design of a FACE experiment makes the experimental observations challenging to model with a one-dimensional distributed model.In addition,FACE instrumentation and monitoring will need improvement in order to be a useful platform for robust model testing.Only after this can we recommend that models such as SHAW are adequate for process interpretation of datasets from FACE experiments or for hypothesis testing.展开更多
基金NASA’s research funding through Earth System Science Fellowship, Grant No: NNG05GP66H, for this research
文摘A landslide susceptibility mapping study was performed using dynamic hillslope hydrology. The modified infinite slope stability model that directly includes vadose zone soil moisture(SM) was applied at Cleveland Corral, California, US and Krishnabhir, Dhading, Nepal. The variable infiltration capacity(VIC-3L) model simulated vadose zone soil moisture and the wetness index hydrologic model simulated groundwater(GW). The GW model predictions had a 75% NASH-Sutcliffe efficiency when compared to California's in-situ GW measurements. The model performed best during the wet season. Using predicted GW and VIC-3L vadose zone SM, the developed landslide susceptibility maps showed very good agreement with mapped landslides at each study region. Previous quasi-dynamic model predictions of Nepal's hazardous areas during extreme rainfall events were enhanced to improve the spatial characterization and provide the timing of hazardous conditions.
文摘The sorption and phase distribution of 20% ethanol and butanol blended gasoline (E20 and B20) vapours have been examined in soils with varying soil organic matter (SOM) and water contents via laboratory microcosm experiments. The presence of 20% alcohol reduced the sorption of gasoline compounds by soil as well as the mass distribution of the compounds to soil solids. This effect was greater for ethanol than butanol. Compared with the sorption coefficient (Kd) of unblended gasoline compounds, the Kd of E20 gasoline compounds decreased by 54% for pentane, 54% for methylcyclopentane (MCP) and 63% for benzene, while the Kd of B20 gasoline compounds decreased by 39% for pentane, 38% for MCP and 49% for benzene, The retardation factor (R) of E20 gasoline compounds decreased by 53% for pentane, 53% for MCP and 48% for benzene, while the R of B20 gasoline compounds decreased by 39% for pentane, 37% for MCP and 38% for benzene. For all SOM and water contents tested, the Kd and R of all gasoline compounds were in the order of unblended gasoline 〉 B20 〉 E20, indicating that the use of high ethanol volume in gasoline to combat climate change could put the groundwater at greater risk of contamination,
基金Supported by the Science and Technology Development Planning Project of Jilin Province(No.201201057)
文摘On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical properties for the soil in the slide zone.The soil samples are gravel containing fine particle.Particles larger than 2 mm occupy the main proportion with the content 51.5%--68.5%.The relative content of clay minerals is low.The clay minerals are illite smectite mixed layer and kaolinite,and their relative contents are 6%--13% and 4%-11%,respectively.The main mineral ingredient is quartz and the relative content is over 30%.Therefore,the soil’s hydrophily is poor.The cohesion and internal friction angle are high,causing preferable physical-mechanical features of slide zone soil.On the basis of the obtained data,the landslide stability is evaluated by means of limit equilibrium method.The safety factors are 3.191 and 1.92 respectively under both natural and normal water level conditions.The study results show that the landslide is stable.It can provide the appropriate basis and reference for landslide stability evaluation and landslide control in Tibet.
基金supported by the National Science Foundation(NSF)Long-Term Ecological Research(LTER)grants(Nos.DEB-0620652,DEB-1234162,and DEB-1831944)Long-Term Research in Environmental Biology(LTREB)grants(Nos.DEB1242531 and DEB-1753859)+2 种基金Biological Integration Institutes grant(No.NSF-DBI-2021898)supported by the Geology Foundation at The University of Texas at Austinsupported by an Ivanhoe Foundation Fellowship。
文摘Free-air carbon dioxide(CO_(2))enrichment(FACE)experiments provide an opportunity to test models of heat and water flow under novel,controlled situations and eventually allow use of these models for hypothesis evaluation.This study assesses whether the United States Department of Agriculture SHAW(Simultaneous Heat and Water)numerical model of vertical one-dimensional soil water flow across the soil-plant-atmosphere continuum is able to adequately represent and explain the effects of increasing atmospheric CO_(2) on soil moisture dynamics in temperate grasslands.Observations in a FACE experiment,the Bio CON(Biodiversity,CO_(2),and Nitrogen)experiment,in Minnesota,USA,were compared with results of vertical soil moisture distribution.Three scenarios represented by different plots were assessed:bare,vegetated with ambient CO_(2),and similarly vegetated with high CO_(2).From the simulations,the bare plot soil was generally the wettest,followed by a drier high-CO_(2) vegetated plot,and the ambient CO_(2) plot was the driest.The SHAW simulations adequately reproduced the expected behavior and showed that vegetation and atmospheric CO_(2) concentration significantly affected soil moisture dynamics.The differences in modeled soil moisture amongst the plots were largely due to transpiration,which was low with high CO_(2).However,the modeled soil moisture only modestly reproduced the observations.Thus,while SHAW is able to replicate and help broadly explain soil moisture dynamics in a FACE experiment,its application for point-and time-specific simulations of soil moisture needs further scrutiny.The typical design of a FACE experiment makes the experimental observations challenging to model with a one-dimensional distributed model.In addition,FACE instrumentation and monitoring will need improvement in order to be a useful platform for robust model testing.Only after this can we recommend that models such as SHAW are adequate for process interpretation of datasets from FACE experiments or for hypothesis testing.