Oil cleaning agents generated from nuclear power plants(NPPs)are radioactive organic liquid wastes.To date,because there are no satisfactory industrial treatment measures,these wastes can only be stored for a long tim...Oil cleaning agents generated from nuclear power plants(NPPs)are radioactive organic liquid wastes.To date,because there are no satisfactory industrial treatment measures,these wastes can only be stored for a long time.In this work,the optimization for the supercritical water oxidation(SCWO)of the spent organic solvent was investigated.The main process parameters of DURSET(oil cleaning agent)SCWO,such as temperature,reaction time,and excess oxygen coefficient,were optimized using response surface methodology,and a quadratic polynomial model was obtained.The determination coefficient(R^(2))of the model is 0.9812,indicating that the model is reliable.The optimized process conditions were at 515 C,66 s,and an excess oxygen coefficient of 211%.Under these conditions,the chemical oxygen demand removal of organic matter could reach 99.5%.The temperature was found to be the main factor affecting the SCWO process.Ketones and benzene-based compounds may be the main intermediates in DURSET SCWO.This work provides basic data for the industrialization of the degradation of spent organic solvents from NPP using SCWO technology.展开更多
In this paper, the complexing abilities of EDTA, TTHA and Cit. with lead in the Pb(2.59 mg/g) contaminated soil were compared in the laboratory. Possibilities for lead and the threeagents to develop stable complexes i...In this paper, the complexing abilities of EDTA, TTHA and Cit. with lead in the Pb(2.59 mg/g) contaminated soil were compared in the laboratory. Possibilities for lead and the threeagents to develop stable complexes increased proportionally to the growth of lead complexible formwhen the PH values ranged between 4 and 6. Under acid conditions, logB_(Pb-TTHA)) valued as 28.1 wasmuch higher than logB_(Pb-EDTA), as 18.0 depending on producing Pb_2-TTHA (logK_(Pb_2-TTHA= 11 0) andPb-HTTHA (logK(Pb-HTTTHA)=8.2)). Conclusively, the complexing ability of TTHA with Pb still ex-aseded that of EDTA by about 10% even when the amount of TTHA added was only equal to onefourth of that of EDTA. Due to the lower cost and less harzn to crops, Cit. can still be taken as abetter chelating agent in acid soil although its coordinative capability with Pb was weaker thanEDTA and TTHA.展开更多
基金supported by Shanghai Sail Program(No.19YF1458000).
文摘Oil cleaning agents generated from nuclear power plants(NPPs)are radioactive organic liquid wastes.To date,because there are no satisfactory industrial treatment measures,these wastes can only be stored for a long time.In this work,the optimization for the supercritical water oxidation(SCWO)of the spent organic solvent was investigated.The main process parameters of DURSET(oil cleaning agent)SCWO,such as temperature,reaction time,and excess oxygen coefficient,were optimized using response surface methodology,and a quadratic polynomial model was obtained.The determination coefficient(R^(2))of the model is 0.9812,indicating that the model is reliable.The optimized process conditions were at 515 C,66 s,and an excess oxygen coefficient of 211%.Under these conditions,the chemical oxygen demand removal of organic matter could reach 99.5%.The temperature was found to be the main factor affecting the SCWO process.Ketones and benzene-based compounds may be the main intermediates in DURSET SCWO.This work provides basic data for the industrialization of the degradation of spent organic solvents from NPP using SCWO technology.
文摘In this paper, the complexing abilities of EDTA, TTHA and Cit. with lead in the Pb(2.59 mg/g) contaminated soil were compared in the laboratory. Possibilities for lead and the threeagents to develop stable complexes increased proportionally to the growth of lead complexible formwhen the PH values ranged between 4 and 6. Under acid conditions, logB_(Pb-TTHA)) valued as 28.1 wasmuch higher than logB_(Pb-EDTA), as 18.0 depending on producing Pb_2-TTHA (logK_(Pb_2-TTHA= 11 0) andPb-HTTHA (logK(Pb-HTTTHA)=8.2)). Conclusively, the complexing ability of TTHA with Pb still ex-aseded that of EDTA by about 10% even when the amount of TTHA added was only equal to onefourth of that of EDTA. Due to the lower cost and less harzn to crops, Cit. can still be taken as abetter chelating agent in acid soil although its coordinative capability with Pb was weaker thanEDTA and TTHA.