Forest clear cutting alters the hydrological processes such as interception, evapotranspiration and infiltration of the forested watershed and consequently increases the amount of water and sediment leaving the waters...Forest clear cutting alters the hydrological processes such as interception, evapotranspiration and infiltration of the forested watershed and consequently increases the amount of water and sediment leaving the watershed. This study was conducted in the Upper Pearl River Watershed (UPRW) located in east-central Mississippito evaluate and compare the potential impacts of forest clear cutting on water and sediment yields using the Soil and Water Assessment Tool (SWAT) model. For this purpose, five hypothetical scenarios representing clear cutting at 10%, 20%, 30%, 55% and 75% of the total forest area of the watershed were generated. The SWAT model was first calibrated (1981-1995) and validated (1996-2008) for monthly stream flow, and later verified (February 2010 to December 2010) for monthly sediment load. Results show that the SWAT model was able to simulate stream flow and sediment load satisfactorily during the calibration/validation and verification periods, respectively. The potential changes caused in yields as a result of the changes in clearcut area were computed by comparing predicted yields from each clear cutting scenario and a base condition. Results from five scenarios demonstrate substantial increase in yields with an increase in the percentage of forest area clearcut. When compared with the base scenario, potential changes in water and sediment yields occur between 17% to 96% and 33% to 250%, respectively, with an increase in clearcut area from 10% to 75%. Results also indicate that, for all scenarios, percentage wise change is larger for sediment yield. Although predicted water and sediment yields generated from each scenario are subject to further verification with observed data, this study provides useful information about the potential amount of water and sediment yields that may be produced under each scenario, and that the potential changes that may happen on yields if similar magnitude of clear cutting occurs in the UPRW or in similar watershed.展开更多
In Hebei Province of North China, forest was recovered with natural recruitment in plantations with large area of clear-cutting Chinese pine(Pinus tabuliformis). This study was aimed to demonstrate the dynamic chara...In Hebei Province of North China, forest was recovered with natural recruitment in plantations with large area of clear-cutting Chinese pine(Pinus tabuliformis). This study was aimed to demonstrate the dynamic characteristics of recruits during the natural recruitment. Both plot survey and the spatial point-pattern analysis were performed. Five developmental stages of natural recruitment were selected and studied, including 1 year before and 2, 5, 8, and 11 years after clear-cutting. Different slope aspects were also included. Natural recruitment was always dominated by Chinese pine with a proportion of higher than 90%. For plots of 1 year before clear-cutting on east-and north-facing slopes, recruit densities were 7886 and 5036 stems/hm2, the average heights were 0.78(±0.85) and 1.06(±1.15) m, and the average diameters at breast height(DBH) were 3.21(±1.38) and 2.91(±1.38) cm, respectively. After clear-cutting, recruit density was initially increased, then it was gradually declined with time; however, the variation of average DBH was contrary to that of recruit density. Both of them were no longer varied between 8 and 11 years after clear-cutting. The average height of recruits continued to increase after clear-cutting. For the plots of 11 years after clear-cutting on east-and north-facing slopes, average heights of recruits reached 2.00(±1.14) and 2.24(±1.20) m, respectively. The statuses of recruits on north-facing slopes were better than those on east-facing slopes after clear-cutting. Meanwhile, recruits on east-facing slopes were always aggregated at small scales, while spatial pattern of recruits varied with time on north-facing slopes. Moreover, forest was recovered more quickly by natural recruitment than by artificial afforestation after clear-cutting. The structural diversity was higher in naturally regenerated forests than in plantations of the same age. Our results demonstrated that clear-cutting of Chinese pine plantations recovered by natural recruitment has the potential to be an effective approach for establishing multifunctional forest.展开更多
文摘Forest clear cutting alters the hydrological processes such as interception, evapotranspiration and infiltration of the forested watershed and consequently increases the amount of water and sediment leaving the watershed. This study was conducted in the Upper Pearl River Watershed (UPRW) located in east-central Mississippito evaluate and compare the potential impacts of forest clear cutting on water and sediment yields using the Soil and Water Assessment Tool (SWAT) model. For this purpose, five hypothetical scenarios representing clear cutting at 10%, 20%, 30%, 55% and 75% of the total forest area of the watershed were generated. The SWAT model was first calibrated (1981-1995) and validated (1996-2008) for monthly stream flow, and later verified (February 2010 to December 2010) for monthly sediment load. Results show that the SWAT model was able to simulate stream flow and sediment load satisfactorily during the calibration/validation and verification periods, respectively. The potential changes caused in yields as a result of the changes in clearcut area were computed by comparing predicted yields from each clear cutting scenario and a base condition. Results from five scenarios demonstrate substantial increase in yields with an increase in the percentage of forest area clearcut. When compared with the base scenario, potential changes in water and sediment yields occur between 17% to 96% and 33% to 250%, respectively, with an increase in clearcut area from 10% to 75%. Results also indicate that, for all scenarios, percentage wise change is larger for sediment yield. Although predicted water and sediment yields generated from each scenario are subject to further verification with observed data, this study provides useful information about the potential amount of water and sediment yields that may be produced under each scenario, and that the potential changes that may happen on yields if similar magnitude of clear cutting occurs in the UPRW or in similar watershed.
基金supported by the National Key R&D Program of China (2017YFD0600501)the Fundamental Research Funds for the Central Universities of China (TD2011-08)
文摘In Hebei Province of North China, forest was recovered with natural recruitment in plantations with large area of clear-cutting Chinese pine(Pinus tabuliformis). This study was aimed to demonstrate the dynamic characteristics of recruits during the natural recruitment. Both plot survey and the spatial point-pattern analysis were performed. Five developmental stages of natural recruitment were selected and studied, including 1 year before and 2, 5, 8, and 11 years after clear-cutting. Different slope aspects were also included. Natural recruitment was always dominated by Chinese pine with a proportion of higher than 90%. For plots of 1 year before clear-cutting on east-and north-facing slopes, recruit densities were 7886 and 5036 stems/hm2, the average heights were 0.78(±0.85) and 1.06(±1.15) m, and the average diameters at breast height(DBH) were 3.21(±1.38) and 2.91(±1.38) cm, respectively. After clear-cutting, recruit density was initially increased, then it was gradually declined with time; however, the variation of average DBH was contrary to that of recruit density. Both of them were no longer varied between 8 and 11 years after clear-cutting. The average height of recruits continued to increase after clear-cutting. For the plots of 11 years after clear-cutting on east-and north-facing slopes, average heights of recruits reached 2.00(±1.14) and 2.24(±1.20) m, respectively. The statuses of recruits on north-facing slopes were better than those on east-facing slopes after clear-cutting. Meanwhile, recruits on east-facing slopes were always aggregated at small scales, while spatial pattern of recruits varied with time on north-facing slopes. Moreover, forest was recovered more quickly by natural recruitment than by artificial afforestation after clear-cutting. The structural diversity was higher in naturally regenerated forests than in plantations of the same age. Our results demonstrated that clear-cutting of Chinese pine plantations recovered by natural recruitment has the potential to be an effective approach for establishing multifunctional forest.