Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic am...Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances.展开更多
In this work, 1,4-bis(4-phenyl-1,2,3-triazole)benzene, 1,3-bis(4-phenyl-1,2,3-triazole)propane, bis(1-phenyl-1,2,3-triazole)-methylphenylsilane, and 1-ally-4-phenyl-1,2,3-triazole have been designed and synthesized vi...In this work, 1,4-bis(4-phenyl-1,2,3-triazole)benzene, 1,3-bis(4-phenyl-1,2,3-triazole)propane, bis(1-phenyl-1,2,3-triazole)-methylphenylsilane, and 1-ally-4-phenyl-1,2,3-triazole have been designed and synthesized via Click reaction. Fourier transform infrared spectroscopy(FT-IR) and nuclear magnetic resonance spectroscopy(NMR) were used to confirm the compounds' structures. The effect of silicon atom on the optical properties has also been studied. The UV-vis absorption wavelength of silicon-containing compound is about ca. 10 nm red-shifted when compared with that of other three compounds. The fluorescence emission bands of the compounds in CHCl_3 solutions were observed around ca. 440 nm. And the luminescent coordination compound, namely [AgL1?NO_3?3H_2O]n, based on the ligand 1-allyl-4-phenyl-1,2,3-triazole has been prepared. In addition, this complex exhibits a 1 D chain structure. The crystal structure has been determined by single-crystal X-ray diffraction, and the optical properties have been investigated by fluorescence spectrum. In summary, our work may provide new materials with luminescent property which is potentially useful in material fields.展开更多
Click reactions are not specific reactions, but they are a way of generating products that follow examples in nature by joining small moieties, with each other producing a huge molecule in a good yield. The mind of th...Click reactions are not specific reactions, but they are a way of generating products that follow examples in nature by joining small moieties, with each other producing a huge molecule in a good yield. The mind of that reaction is used in biomolecules synthesis, pharmacological and various biometric applications. The first Click reaction is the Copper compounds-catalyzed reaction of an azide with an alkyne (CuAAC), this copper-catalyzed "click" does not require legands on the metal but the metal oxides also can accelerate the reactions. For enhancement the products of Click reactions we were replacing the copper compounds in a classical reaction by the prepared nanocopper compound (NPs). And measure the consumption of starting material. Behind the evolution is the catalytic effect of nanocopper compounding (NPs) on (H2O2). Owing to the huge surface area of nanocopper compound (NPs), it was found that: the (NPs) can speed up decomposition of H2O2, also can accelerate the classical click reaction.展开更多
This article reports on the synthesis of acrylate monomer from renewable material. Vanillin was selected to be the start material to produce new monomer called vanillin acrylate and abbreviated by (VA). It has been su...This article reports on the synthesis of acrylate monomer from renewable material. Vanillin was selected to be the start material to produce new monomer called vanillin acrylate and abbreviated by (VA). It has been successfully investigated by 1H, 13C NMR, IR and UV and all results were in logic state. The next step was to synthetize three different thermo-responsive functional copolymers by incorporation of three different molar ratios of vanillin acrylate (10, 20, 30 mol%) with N-Isopropylacrylamide via free radical polymerization by AIBN as initiator in solution. All copolymers were deduced by 1NMR and IR and all showed the presence of aldehyde group. The copolymer was used for grafting of tryptophan and β-alanine through the chemical link between amino group and the active aldehyde group by click reactions to form Schiff’s base imine compounds. Moreover, polymers were also elucidated by 1HNMR, IR and UV, Size Exclusion Chromatography (SEC) was used for the molecular weight determination, differential scanning calorimeter (DSC) for glass temperature of solid polymers, XRD for crystallinity. UV-vis Spectroscopy was used for the determination of phase separation or the lower critical solution temperature (Tc) of polymers solution not only in deionized water but in pH5 and pH11. The mount of conversation and linked amino acid was determined by UV-vis Spectroscopy.展开更多
Eleven triazolyl substituted tetrahydrobenzofuran derivatives were synthesized in high yields as novel H+/K+- ATPase inhibitor via one-pot Cul-catalyzed three-component click reaction of azide, secondary amine and 3...Eleven triazolyl substituted tetrahydrobenzofuran derivatives were synthesized in high yields as novel H+/K+- ATPase inhibitor via one-pot Cul-catalyzed three-component click reaction of azide, secondary amine and 3-bromopropyne under mild conditions in water. Their structures were characterized by NMR, IR, ESI-MS, ele- mental analysis and single-crystal X-ray diffraction analysis. Most of the target compounds exhibited better H+/K+- ATPase inhibitory activity than commercial omeprazole with IC50 values less than 15 gmol'L-~. The initial struc- ture-activity analysis suggested that the triazole substituted by cycloalkyl, aromatic ring or O-containing side-chain seemed to be beneficial for enhancing the activity.展开更多
Hypoxia in the tumor microenvironment(TME)greatly limits the tumor-killing therapeutic efficacy of sonodynamic therapy(SDT);this phenomenon is further exacerbated by increased glutathione(GSH)levels in cancer cells.Si...Hypoxia in the tumor microenvironment(TME)greatly limits the tumor-killing therapeutic efficacy of sonodynamic therapy(SDT);this phenomenon is further exacerbated by increased glutathione(GSH)levels in cancer cells.Simultaneously,cancer starvation therapy is increasingly recognized nowadays as a promising clinical translation,but the efficacy of glucose oxidase(GOx)-based starvation therapy is also limited by the lack of oxygen in the tumor.Glyceraldehyde-3-phosphate dehydrogenase(GAPDH)is a key glycolytic enzyme and can therefore be a target for starvation therapy in the absence of oxygen engagement.Here,we proposed thiol-ene click reactions based on a two-dimensional metal-organic framework(MOF)modification for tumor treatments to enable the combination of SDT and starvation therapy.Experimental studies demonstrated that the prepared material could consume GSH and GAPDH free from oxygen in TME,which benefited from the thiol-ene click reactions between the MOFs and thiol substances in cancer cells.Further experiments in vitro and in vivo indicated the prepared MOF materials could kill cancer cells efficiently.This study is expected to create a promising avenue for thiol-ene click reactions in SDT and starvation therapy for cancer.展开更多
Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole(CBT) and D-cystein...Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole(CBT) and D-cysteine(D-Cys) in fireflies and has high biocompatibility and controllability in physiological solutions. Under the control of p H, reduction, or enzyme, this CBTbased click reaction has been widely applied to a wide range of biomedical fields such as protein labeling, molecular imaging(e.g., optical imaging, nuclear imaging, magnetic resonance imaging and photoacoustic imaging), nanomaterial fabrication, cancer therapy, and other potentialities.展开更多
Seventeen novel gem-difluoromethylene-containing 1,2,3-triazoles were synthesized by the click reaction of ethyl 2-azido-2,2-difluoroacetate and terminal alkynes in the presence of 10 mol% CuI.
An efficient and green copper(Ⅱ) acetylacetonate-catalyzed protocol for the Huisgen-click reaction in water at 100℃ has been established. The protocol was not only suitable for the reaction between organic azides ...An efficient and green copper(Ⅱ) acetylacetonate-catalyzed protocol for the Huisgen-click reaction in water at 100℃ has been established. The protocol was not only suitable for the reaction between organic azides and alkynes, but also suitable for one-pot three-component reaction among alkyl halides, NaN3 and alkynes.展开更多
This paper reports the production of glycopolymers via a simple and flexible method.A novel glycopolymer with a hyperbranched poly(amido amine) core and a sugar shell (HPAA-GLc) was synthesized by using thiol-ene clic...This paper reports the production of glycopolymers via a simple and flexible method.A novel glycopolymer with a hyperbranched poly(amido amine) core and a sugar shell (HPAA-GLc) was synthesized by using thiol-ene click reaction via facile one-pot method.Hyperbranched poly(amido amine) with vinyl terminals was first synthesized by Michael addition polymerization of N,N'-methylene bisacrylamide (MBA) with 1-(2-aminoethyl) piperazine (AEPZ).Subsequently,thiol-ene click reaction between vinyl units of hyperbranched poly(amido amine) and thio-glucose was performed in situ.Based on the NMR result,all the vinyl groups reacted with thiol-glucose in 120 min.Strong photoluminescence emission was observed from the aqueous solution of HPAA-GLc.展开更多
"Thiol-yne" click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end st..."Thiol-yne" click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end strategy was employed when using the di-addition feature of thiol-yne reaction, thus the in-chain di-addition strategy could endow us with a broader space to develop the synthesis of advanced polymers. Therefore, in this paper, the features of in-chain mono and di-addition were investigated when modifying the alkynefunctionalized polymers to prepare grafted polymers via thiol-yne click reaction. The results showed that it is almost impossible to obtain the in-chain di-adducts even under excess feeding of chain-end thiol-functionalized grafts, while only the in-chain mono-adducts could be obtained efficiently. Further researches investigated that the controlled grafting could be encountered when carrying out the thiol-yne click reaction between chain-end alkyne-functionalized polystyrenes and chain-end thiol-functionalized polystyrenes under proper feedings. Therefore, the effect of steric?hindrance might be the primary reason for the alternative grafting via thiol-yne click reaction between in-chain and chain-end alkyne-functionalized polymers.展开更多
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functiona...Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.展开更多
基金the National Natural Science Foundation of China(Grant no.51973073)the Fel owship of China Postdoctoral Science Foundation(2021M701303)the analytical and testing assistance from the Analysis and Testing Center of HUST for support of this work
文摘Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances.
基金supported by the National Natural Science Foundation of China(No.21274080)
文摘In this work, 1,4-bis(4-phenyl-1,2,3-triazole)benzene, 1,3-bis(4-phenyl-1,2,3-triazole)propane, bis(1-phenyl-1,2,3-triazole)-methylphenylsilane, and 1-ally-4-phenyl-1,2,3-triazole have been designed and synthesized via Click reaction. Fourier transform infrared spectroscopy(FT-IR) and nuclear magnetic resonance spectroscopy(NMR) were used to confirm the compounds' structures. The effect of silicon atom on the optical properties has also been studied. The UV-vis absorption wavelength of silicon-containing compound is about ca. 10 nm red-shifted when compared with that of other three compounds. The fluorescence emission bands of the compounds in CHCl_3 solutions were observed around ca. 440 nm. And the luminescent coordination compound, namely [AgL1?NO_3?3H_2O]n, based on the ligand 1-allyl-4-phenyl-1,2,3-triazole has been prepared. In addition, this complex exhibits a 1 D chain structure. The crystal structure has been determined by single-crystal X-ray diffraction, and the optical properties have been investigated by fluorescence spectrum. In summary, our work may provide new materials with luminescent property which is potentially useful in material fields.
文摘Click reactions are not specific reactions, but they are a way of generating products that follow examples in nature by joining small moieties, with each other producing a huge molecule in a good yield. The mind of that reaction is used in biomolecules synthesis, pharmacological and various biometric applications. The first Click reaction is the Copper compounds-catalyzed reaction of an azide with an alkyne (CuAAC), this copper-catalyzed "click" does not require legands on the metal but the metal oxides also can accelerate the reactions. For enhancement the products of Click reactions we were replacing the copper compounds in a classical reaction by the prepared nanocopper compound (NPs). And measure the consumption of starting material. Behind the evolution is the catalytic effect of nanocopper compounding (NPs) on (H2O2). Owing to the huge surface area of nanocopper compound (NPs), it was found that: the (NPs) can speed up decomposition of H2O2, also can accelerate the classical click reaction.
文摘This article reports on the synthesis of acrylate monomer from renewable material. Vanillin was selected to be the start material to produce new monomer called vanillin acrylate and abbreviated by (VA). It has been successfully investigated by 1H, 13C NMR, IR and UV and all results were in logic state. The next step was to synthetize three different thermo-responsive functional copolymers by incorporation of three different molar ratios of vanillin acrylate (10, 20, 30 mol%) with N-Isopropylacrylamide via free radical polymerization by AIBN as initiator in solution. All copolymers were deduced by 1NMR and IR and all showed the presence of aldehyde group. The copolymer was used for grafting of tryptophan and β-alanine through the chemical link between amino group and the active aldehyde group by click reactions to form Schiff’s base imine compounds. Moreover, polymers were also elucidated by 1HNMR, IR and UV, Size Exclusion Chromatography (SEC) was used for the molecular weight determination, differential scanning calorimeter (DSC) for glass temperature of solid polymers, XRD for crystallinity. UV-vis Spectroscopy was used for the determination of phase separation or the lower critical solution temperature (Tc) of polymers solution not only in deionized water but in pH5 and pH11. The mount of conversation and linked amino acid was determined by UV-vis Spectroscopy.
文摘Eleven triazolyl substituted tetrahydrobenzofuran derivatives were synthesized in high yields as novel H+/K+- ATPase inhibitor via one-pot Cul-catalyzed three-component click reaction of azide, secondary amine and 3-bromopropyne under mild conditions in water. Their structures were characterized by NMR, IR, ESI-MS, ele- mental analysis and single-crystal X-ray diffraction analysis. Most of the target compounds exhibited better H+/K+- ATPase inhibitory activity than commercial omeprazole with IC50 values less than 15 gmol'L-~. The initial struc- ture-activity analysis suggested that the triazole substituted by cycloalkyl, aromatic ring or O-containing side-chain seemed to be beneficial for enhancing the activity.
基金supported by the National Natural Science Foundation of China(52172096)the Classification Development of the Capital Normal University(009-2155091)。
文摘Hypoxia in the tumor microenvironment(TME)greatly limits the tumor-killing therapeutic efficacy of sonodynamic therapy(SDT);this phenomenon is further exacerbated by increased glutathione(GSH)levels in cancer cells.Simultaneously,cancer starvation therapy is increasingly recognized nowadays as a promising clinical translation,but the efficacy of glucose oxidase(GOx)-based starvation therapy is also limited by the lack of oxygen in the tumor.Glyceraldehyde-3-phosphate dehydrogenase(GAPDH)is a key glycolytic enzyme and can therefore be a target for starvation therapy in the absence of oxygen engagement.Here,we proposed thiol-ene click reactions based on a two-dimensional metal-organic framework(MOF)modification for tumor treatments to enable the combination of SDT and starvation therapy.Experimental studies demonstrated that the prepared material could consume GSH and GAPDH free from oxygen in TME,which benefited from the thiol-ene click reactions between the MOFs and thiol substances in cancer cells.Further experiments in vitro and in vivo indicated the prepared MOF materials could kill cancer cells efficiently.This study is expected to create a promising avenue for thiol-ene click reactions in SDT and starvation therapy for cancer.
基金supported by the Ministry of Science and Technology of China (2016YFA0400904)the National Natural Science Foundation of China (21725505, 21675145)the Major program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY006)
文摘Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole(CBT) and D-cysteine(D-Cys) in fireflies and has high biocompatibility and controllability in physiological solutions. Under the control of p H, reduction, or enzyme, this CBTbased click reaction has been widely applied to a wide range of biomedical fields such as protein labeling, molecular imaging(e.g., optical imaging, nuclear imaging, magnetic resonance imaging and photoacoustic imaging), nanomaterial fabrication, cancer therapy, and other potentialities.
基金Project supported by the National Natural Science Foundation of China (No. 21072057), the Key Project in the National Science & Technology Pillar Program of China in the Twelfth Five-year Plan Period (No. 2011BAE06B05), and the Shanghai Leading Academic Discipline Project (No. B507).
文摘Seventeen novel gem-difluoromethylene-containing 1,2,3-triazoles were synthesized by the click reaction of ethyl 2-azido-2,2-difluoroacetate and terminal alkynes in the presence of 10 mol% CuI.
文摘An efficient and green copper(Ⅱ) acetylacetonate-catalyzed protocol for the Huisgen-click reaction in water at 100℃ has been established. The protocol was not only suitable for the reaction between organic azides and alkynes, but also suitable for one-pot three-component reaction among alkyl halides, NaN3 and alkynes.
基金supported by the National Natural Science Foundation of China (20874093,50973102)
文摘This paper reports the production of glycopolymers via a simple and flexible method.A novel glycopolymer with a hyperbranched poly(amido amine) core and a sugar shell (HPAA-GLc) was synthesized by using thiol-ene click reaction via facile one-pot method.Hyperbranched poly(amido amine) with vinyl terminals was first synthesized by Michael addition polymerization of N,N'-methylene bisacrylamide (MBA) with 1-(2-aminoethyl) piperazine (AEPZ).Subsequently,thiol-ene click reaction between vinyl units of hyperbranched poly(amido amine) and thio-glucose was performed in situ.Based on the NMR result,all the vinyl groups reacted with thiol-glucose in 120 min.Strong photoluminescence emission was observed from the aqueous solution of HPAA-GLc.
基金financially supported by the National Natural Science Foundation of China (Nos. 21871037, 21674017, andU1508204)
文摘"Thiol-yne" click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end strategy was employed when using the di-addition feature of thiol-yne reaction, thus the in-chain di-addition strategy could endow us with a broader space to develop the synthesis of advanced polymers. Therefore, in this paper, the features of in-chain mono and di-addition were investigated when modifying the alkynefunctionalized polymers to prepare grafted polymers via thiol-yne click reaction. The results showed that it is almost impossible to obtain the in-chain di-adducts even under excess feeding of chain-end thiol-functionalized grafts, while only the in-chain mono-adducts could be obtained efficiently. Further researches investigated that the controlled grafting could be encountered when carrying out the thiol-yne click reaction between chain-end alkyne-functionalized polystyrenes and chain-end thiol-functionalized polystyrenes under proper feedings. Therefore, the effect of steric?hindrance might be the primary reason for the alternative grafting via thiol-yne click reaction between in-chain and chain-end alkyne-functionalized polymers.
基金supported by the National Natural Science Foundation of China (No.51773190 and No.51973206)。
文摘Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.