The novel carbenoid H2Ge=CLiF was studied by using the DFT B3LYP and QCISD methods. Geometry optimization calculations indicate that H2Ge=CLiF has three equilibrium configurations, in which the three-membered structur...The novel carbenoid H2Ge=CLiF was studied by using the DFT B3LYP and QCISD methods. Geometry optimization calculations indicate that H2Ge=CLiF has three equilibrium configurations, in which the three-membered structure is the lowest in energy and thus the most stable. Two transition states for isomerization reactions of H2Ge=CLiF were located and the energy barriers were calculated. For the most stable one, the vibrational frequencies and infrared intensities were predicted.展开更多
文摘The novel carbenoid H2Ge=CLiF was studied by using the DFT B3LYP and QCISD methods. Geometry optimization calculations indicate that H2Ge=CLiF has three equilibrium configurations, in which the three-membered structure is the lowest in energy and thus the most stable. Two transition states for isomerization reactions of H2Ge=CLiF were located and the energy barriers were calculated. For the most stable one, the vibrational frequencies and infrared intensities were predicted.