As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con...As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
The increasing trend of air temperature along with the climate warming has been accepted gradually by scientists and by the general public. Qinghai_Xizang Plateau, a unique geographic unit due to high_altitude climate...The increasing trend of air temperature along with the climate warming has been accepted gradually by scientists and by the general public. Qinghai_Xizang Plateau, a unique geographic unit due to high_altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensitive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai_Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the increase of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai_Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai_Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indigestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, consequently, decreases the ruminant assimilation ability.展开更多
Influenced by human activities,global climate warming has become an increasingly serious issue.The continuously increasing earth surface temperature has a far-reaching impact on rice production.This review addresses t...Influenced by human activities,global climate warming has become an increasingly serious issue.The continuously increasing earth surface temperature has a far-reaching impact on rice production.This review addresses the effects of climate warming on rice cultivation regions and yield,the effects of high temperature damage on rice growth and development,and the progress on genetic improvement of heat tolerance in rice.Climate warming increased the active accumulated temperature of rice growth,extended the rice growth season,and constantly expanded the rice cultivation regions northward,which was conducive to the increase of rice cultivation area.Furthermore,climate warming also resulted in the frequent occurrence of high temperature stress in rice.At booting stage and flowering stage,high temperature stress would cause serious physiological damages to rice and reduce spikelet fertility; at filling stage,high temperature stress would lead to poor grain plumpness and decline rice yield and quality.Based on high temperature screening,a number of heat-tolerant rice germplasms had been identified,and dozens of QTLs controlling rice heat-tolerance were also identified.Planting heat-tolerant rice varieties is one of the most effective ways of alleviating heat damages on rice.Heat-tolerant rice germplasms can be adopted as parents for the breeding of heat-tolerant rice combining with the proper methods of high-temperature screening,identification and breeding.展开更多
Data of 44 glacier systems in China used in this paper were obtained from Chinese Glacier Inventories and the meteorological data were got from Meteorological Atlas of Plateau of west China. Based on the statistical a...Data of 44 glacier systems in China used in this paper were obtained from Chinese Glacier Inventories and the meteorological data were got from Meteorological Atlas of Plateau of west China. Based on the statistical analysis and functional model simulation results of the 44 glacier systems in China, the glacier systems were divided into extremely-sensitive glacier system, semi-sensitive glacier system, extremely-steady glacier system and semi-steady glacier system in terms of glacier system's level of water-energy exchange, rising gradient of the equilibrium line altitudes and retreating rate of area to climate warming, their median size and vertical span distribution, and their runoff characteristics to climate warming. Furthermore the functional model of glacier system to climate warming was applied in this paper to predict the average variation trends of the 4 types of glacier systems, which indicate that different sensitivity types of glacier systems respond to the climate warming differently.展开更多
Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more...Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more and more attention from Chinese government and scientists. In this study, the possible effects of climate warming on the national northern limits of cropping systems, the northern limits of winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation in China from 1981 to 2007 were analyzed. Also, the possible change of crop yield caused by planting limits displacement during the periods 1950s-1981 and 1981-2007 was compared and discussed. The recognized calculation methods of agricultural climatic indices were employed. According to the indices of climatic regionalization for cropping systems, the national northern limits of cropping systems, winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation during two periods, including the 1950s-1980 and 1981-2007, were drawn with ArcGIS software. Compared with the situation during the 1950s- 1980, the northern limits of double cropping system during 1981-2007 showed significant spatial displacement in Shaanxi, Shanxi, Hebei, and Liaoning provinces and Beijing municipality, China. The northern limits of triple cropping system showed the maximum spatial displacement in Hunan, Hubei, Anhui, Jiangsu, and Zhejiang provinces, China. Without considering variety change and social economic factors, the per unit area grain yield of main planting patterns would increase about 54-106% if single cropping system was replaced by double cropping system, which turned out to be 27- 58% if double cropping system was replaced by triple cropping system. In Liaoning, Hebei, Shanxi, Shaanxi, Gansu, and Qinghai provinces, Inner Mongolia and Ningxia autonomous regions, China, the northern limits of winter wheat during 1981-2007 moved northward and expanded westward in different degrees, compared with those during the 1950s-1980. Taking Hebei Province as an example, the northern limits of winter wheat moved northward, and the per unit area grain yield would averagely increase about 25% in the change region if the spring wheat was replaced by winter wheat. In Zhejiang, Anhui, Hubei, and Hunan provinces, China, the planting northern limits of double rice moved northward, and the per unit area grain yield would increase in different degrees only from the perspective of heat resource. The stable- yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward in most regions, which was caused by the decrease of local precipitation in recent years. During the past 50 yr, climate warming made the national northern limits of cropping systems move northward in different degrees, the northern limits of winter wheat and double rice both moved northward, and the cropping system change would cause the increase of per unit area grain yield in the change region. However, the stable-yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward due to the decrease of precipitation.展开更多
Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- ti...Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- tions of N deposition. In our study, four treatments were designed, including a control, diurnal warming (DW), N deposition (ND), and combined warming and N deposition (WN). The effects of DW, ND, and WN on P composition were studied by 3~p nuclear magnetic resonance (3~p NMR) spectroscopy in a temperate grassland region of China. The results showed that the N deposition decreased the soil pH and total N (TN) concentration but increased the soil OIsen-P concentration. The solution-state 31p NMR analysis showed that the DW, ND and WN treatments slightly decreased the proportion of orthophosphate and increased that of the monoesters. An absence of myo-inositol phosphate in the DW, ND and WN treatments was observed compared with the control. Furthermore, the DW, ND and WN treatments significantly decreased the recovery of soil P in the NaOH-EDTA solution by 17%-20%. The principal component analysis found that the soil pH was positively correlated with the P recovery in the NaOH-EDTA solution. Therefore, the decreased soil P recovery in the DW and ND treatments might be caused by an indirect influence on the soil pH. Additionally, the soil moisture content was the key factor limiting the available P. The positive correlation of total carbon (TC) and TN with the soil P composition indicated the influence of climate warming and N deposition on the biological processes in the soil P cycling.展开更多
Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Ge...Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.展开更多
This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in sit...This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of "Northern wetting and Southern drying", similar to the anti-phase of the climate pattern prevailing during 1980--2000 in China's Mainland; southwestern China incurred a severe drought during 2009-20l 3. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further.展开更多
Globally climates are warming. How do desert plants of different ecotypes respond to the climate change? This paper studied the differing responses to climate warming shown by desert plants of different ecotypes thro...Globally climates are warming. How do desert plants of different ecotypes respond to the climate change? This paper studied the differing responses to climate warming shown by desert plants of different ecotypes through analyzing the phenology and meteorological data of 22 desert plant species growing in Minqin Desert Bo- tanical Garden in Northwest China during the period 1974-2009. The results indicate: (1) The temperature in the study area has risen quickly since 1974, and plants' growing periods became longer. The spring phenology of mesophytes advanced, and the autumn phenology of xerophytes was delayed; (2) The starting dates of spring phenophase of mesophytes and xerophytes differed significantly and both showed an advancing trend; (3) The spring phenology of mesophytes advanced by more days than that of xerophytes, whereas the autumn phenology of mesophytes was delayed by less days than that of the xerophytes; and (4) Mesophytes are more sensitive than xerophytes to rising temperature in spring and falling temperature in autumn. These findings are of value in plant management and regional introduction of different species.展开更多
[Objective] The research aimed to study the variation characteristics of temperature and precipitation in Benxi area under the background of climate warming.[Method] Based on the monthly mean temperature and precipita...[Objective] The research aimed to study the variation characteristics of temperature and precipitation in Benxi area under the background of climate warming.[Method] Based on the monthly mean temperature and precipitation data of four routine meteorological stations in Benxi area from 1953 to 2010,by using linear tendency rate,linear regression equation,wavelet analysis,Mann-Kendall detection and so on,the variation characteristics of temperature and precipitation under the background of climate warming in the area were analyzed.[Result] The annual average temperature during 1953-2010 in Benxi area presented rise trend,and the linear tendency rate was 0.28 ℃/10 a.It was temperature increase trend in four seasons.The temperature rise rate in winter was the maximum and was the minimum in summer.The annual rainfall presented decrease trend,and the linear tendency rate was-18.16 mm/10 a.Except in spring,it was decrease trend in other seasons.Mann-Kendall mutation detection showed that the mutation of annual average temperature in Benxi area in recent 58 years appeared in 1986.There was no mutation phenomenon in summer.Spring mutation appeared in 1974,and autumn mutation appeared in 1987.Winter mutation was in 1981.The annual and seasonal precipitation didn’t have the mutation phenomenon.The wavelet analysis found that the annual average temperature had the periodic variations of 12-14,5-6 and 2 years in Benxi area in recent 58 years.The annual rainfall had the periodic fluctuations of 8-12,5-6 and 2 years.[Conclusion] The research provided the scientific basis for exploration and sustainable development of the climate resources in the mountain area.展开更多
The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of th...The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation. The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1 ℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4 %, accelerate runoff increasing rate by 8 % and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate, while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system, where extremely continental glaciers dominate.展开更多
Tree species respond to climate change at multiple scales,such as species physiological response at fine scale and species distribution (quantified by percent area) at broader spatial scale.At a given spatial scale,sp...Tree species respond to climate change at multiple scales,such as species physiological response at fine scale and species distribution (quantified by percent area) at broader spatial scale.At a given spatial scale,species physiological response and distribution can be correlated positively or negatively.The consistency of such correlation relationships at different spatial scales determines whether species responses derived from local scales can be extrapo-lated to broader spatial scales.In this study,we used a coupled modeling approach that coupled a plot-level ecosystem process model (LINKAGES) with a spatially explicit landscape model (LANDIS).We investigated species physio-logical responses and distribution responses to climate warming at the local,zonal and landscape scales respectively,and examined how species physiological response and distribution correlated at each corresponding scale and whether the correlations were consistent among these scales.The results indicate that for zonal and warming-sensitive species,the correlations between species physiological response and distribution are consistent at these spatial scales,and therefore the research results of vegetation response to climate warming at the local scale can be extrapolated to the zonal and landscape scales.By contrast,for zonal and warming-insensitive species the correlations among different spatial scales are consistent at some spatial scales but at other scales.The results also suggest that the results of azonal species at the local scale near their distribution boundaries can not be extrapolated simply to broader scales due to stronger responses to climate warming in those boundary regions.展开更多
Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the freq...Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the frequency and intensity of tropical cyclone are investigated. The results showed that with the climatic warming in both hemispheres, the frequency of the tropical cyclone over the western North Pacific Ocean reduces and its intensity weakens simultaneously. A possible explanation might be that the cold air invasion from the Southern Hemisphere weakens due to global warming.展开更多
Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise...Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June; the largest monthly runoffs also have an increment of about 15 percent related to before 1980; April-June runoff increased from the 60 percent of the annual runoff before 1980 to nearly 70 percent after 1990. The long-term trend shows temperature and precipitation increased mainly in the winter, but the rainfall declined in summer; hydrological process is manifested by the rising runoff in May and decreasing in June. Warming and the increase of winter and spring snowcover would lead to increased snowmelt, increasing the spring-flood hazards and the maximum flood discharge with disastrous consequences. The changed hydrological patterns caused by climate change have already impacted the urban water supply and agricultural and livestock production along the river.展开更多
Background: Treeline dynamics have inevitable impacts on the forest treeline structure and composition. The present research sought to estimate treeline movement and structural shifts in response to recent warming in ...Background: Treeline dynamics have inevitable impacts on the forest treeline structure and composition. The present research sought to estimate treeline movement and structural shifts in response to recent warming in Cehennemdere, Turkey. After implementing an atmospheric correction, the geo-shifting of images was performed to match images together for a per pixel trend analysis. We developed a new approach based on the NDVI, LST(land surface temperature) data, air temperature data, and forest stand maps for a 43-year period. The forest treeline border was mapped on the forest stand maps for 1970, 1992, 2002, and 2013 to identify shifts in the treeline altitudes, and then profile statistics were calculated for each period. Twenty sample plots(10 × 10 pixels) were selected to estimatethe NDVI and LST shifts across the forest timberline using per-pixel trend analysis and non-parametric Spearman’s correlation analysis. In addition, the spatial and temporal shifts in treeline tree species were computed within the selected plots for four time periods on the forest stand maps to determine the pioneer tree species.Results: A statistically significant increasing trend in all climate variables was observed, with the highest slopein the monthly average mean July temperature(tau = 0.62, ρ < 0.00). The resultant forest stand maps showed a geographical expansion of the treeline in both the highest altitudes(22 m–45 m) and the lowest altitudes(20 m–105 m) from 1970 to 2013. The per pixel trend analysis indicated an increasing trend in the NDVI and LST values within the selected plots. Moreover, increases in the LST were highly correlated with increases in the NDVIbetween 1984 and 2017(r = 0.75, ρ < 0.05). Cedrus libani and Juniperus communis app. were two pioneer tree species that expanded and grew consistently on open lands, primarily on rocks and soil-covered areas, from 1970 to 2013.Conclusion: The present study il ustrated that forest treeline dynamics and treeline structural changes can be detected using two data sources. Additionally, the results will have a significant contribution to and implication for treeline movement studies and forest landscape change investigations attempting to project climate change impacts on tree species in response to climate warming. The results will assist forest managers in establishing some developmentaladaptation strategies for forest treeline ecotones.展开更多
In boreal forest ecosystems, permafrost and forest types are mutually interdependent;permafrost degradation impacts forest ecosystem structure and functions. The Xing’an permafrost in Northeast China is on the southe...In boreal forest ecosystems, permafrost and forest types are mutually interdependent;permafrost degradation impacts forest ecosystem structure and functions. The Xing’an permafrost in Northeast China is on the southern margin of the Eastern Asia latitudinal permafrost body. Under a warming climate, permafrost undergoes rapid and extensive degradation. In this study, the frost-number (Fn) model based on air temperatures and ground surface temperatures was used to predict the distribution of the Xing’an permafrost, and, temporal and spatial changes in air and ground-surface temperatures from 1961 to 2019 are analyzed. The results show that Northeast China has experienced a rapid and substantial climate warming over the past 60 years. The rises in mean annual air and mean annual ground-surface temperatures were higher in permafrost zones than those in the seasonal frost zone. The frost numbers of air and ground-surface temperatures were calculated for determining the southern limit of latitudinal permafrost and for permafrost zonation. The southern limits of discontinuous permafrost, sporadic permafrost, and latitudinal permafrost moved northward significantly. According to the air-temperature frost-number criteria for permafrost zoning, compared with that in the 1960s, the extent of Xing’an permafrost in Northeast China had decreased by 40.6% by the 2010s. With an average rate of increase in mean annual air temperatures at 0.03 ℃ a^(−1), the extent of permafrost in Northeast China will decrease to 26.42 × 10^(4) by 2020, 14.69 × 10^(4) by 2040 and to 11.24 × 10^(4) km^(2) by 2050. According to the ground-surface temperature frost-number criteria, the southern limit of latitudinal permafrost was at the 0.463. From the 1960s to the 2010s, the extent of latitudinal permafrost declined significantly. Due to the nature of the ecosystem-protected Xing’an-Baikal permafrost, management and protection (e.g., more prudent and effective forest fire management and proper logging of forests) of the Xing’an permafrost eco-environment should be strengthened.展开更多
Climate changes in Guangdong are studied based on temperature data of 86 meteorological stations in Guangdong Province during 1961 – 2000, temperature data in Guangzhou during 1908 – 2002, and sea level data in the ...Climate changes in Guangdong are studied based on temperature data of 86 meteorological stations in Guangdong Province during 1961 – 2000, temperature data in Guangzhou during 1908 – 2002, and sea level data in the South China Sea during 1958 – 2001. Significant climate warming and sea level rise in Guangdong is demonstrated. Possible influences of climate warming on agriculture in Guangdong are discussed in terms of thermal resources, crop and breed layout, crop yield, diseases, insect pests and weeds as well as agrometeorological disasters, etc. In the final part, agricultural strategies of mitigating and adapting to the climate changes are given.展开更多
Based on temperature data in Guangdong in the past 50years, statistical methods are used to analyze the characteristics of temperature in spatial and temporal variation. The results show that land surface temperature ...Based on temperature data in Guangdong in the past 50years, statistical methods are used to analyze the characteristics of temperature in spatial and temporal variation. The results show that land surface temperature warms by 0.16℃/1 0a in Guangdong. The range of warming was lower than the average of nationwide and global land surface. Furthermore, the temperature has a larger increase tendency in winter and spring and coastal areas than in summer and autumn and inland areas. Climate zones move towards the north obviously. North tropical zone is expanding, south subtropical zone is reducing and central subtropical zone is relatively stable. Under the global climate warming, characteristics of climate warming in Guangdong were influenced by atmosphere general circulation, sea surface temperature and human activities etc.展开更多
Based on the analysis of phenological variation characters of Populus simonii in spring and autumn in Liaohe River Delta during 1989-2009,the relationship model between phenophase difference and temperature variation ...Based on the analysis of phenological variation characters of Populus simonii in spring and autumn in Liaohe River Delta during 1989-2009,the relationship model between phenophase difference and temperature variation was constructed,and the responses of phenophase to the changes of temperature and critical temperature duration were analyzed under the background of climate change.The results showed that spring phenophase in Liaohe River Delta in recent 21 years occurred a little earlier without obvious trend feature,and spring phenophase change was mainly affected by temperature fluctuation,with the nonlinear relationship between them.Meanwhile,autumn phenophase was significantly delayed and mainly determined by the time of temperature dropped to a certain index.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
文摘The increasing trend of air temperature along with the climate warming has been accepted gradually by scientists and by the general public. Qinghai_Xizang Plateau, a unique geographic unit due to high_altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensitive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai_Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the increase of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai_Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai_Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indigestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, consequently, decreases the ruminant assimilation ability.
文摘Influenced by human activities,global climate warming has become an increasingly serious issue.The continuously increasing earth surface temperature has a far-reaching impact on rice production.This review addresses the effects of climate warming on rice cultivation regions and yield,the effects of high temperature damage on rice growth and development,and the progress on genetic improvement of heat tolerance in rice.Climate warming increased the active accumulated temperature of rice growth,extended the rice growth season,and constantly expanded the rice cultivation regions northward,which was conducive to the increase of rice cultivation area.Furthermore,climate warming also resulted in the frequent occurrence of high temperature stress in rice.At booting stage and flowering stage,high temperature stress would cause serious physiological damages to rice and reduce spikelet fertility; at filling stage,high temperature stress would lead to poor grain plumpness and decline rice yield and quality.Based on high temperature screening,a number of heat-tolerant rice germplasms had been identified,and dozens of QTLs controlling rice heat-tolerance were also identified.Planting heat-tolerant rice varieties is one of the most effective ways of alleviating heat damages on rice.Heat-tolerant rice germplasms can be adopted as parents for the breeding of heat-tolerant rice combining with the proper methods of high-temperature screening,identification and breeding.
基金Knowledge Innovation Project of the CAS, No.KZCX2-YW-301National Basic S&T Project of the Ministry of Science and Technology of the People's Republic of China,No.2006FY110200National Natural Science Foundation of China,No.4084002
文摘Data of 44 glacier systems in China used in this paper were obtained from Chinese Glacier Inventories and the meteorological data were got from Meteorological Atlas of Plateau of west China. Based on the statistical analysis and functional model simulation results of the 44 glacier systems in China, the glacier systems were divided into extremely-sensitive glacier system, semi-sensitive glacier system, extremely-steady glacier system and semi-steady glacier system in terms of glacier system's level of water-energy exchange, rising gradient of the equilibrium line altitudes and retreating rate of area to climate warming, their median size and vertical span distribution, and their runoff characteristics to climate warming. Furthermore the functional model of glacier system to climate warming was applied in this paper to predict the average variation trends of the 4 types of glacier systems, which indicate that different sensitivity types of glacier systems respond to the climate warming differently.
基金funded by the Mode Construction of Modern Farming System and Supporting Technology Research and Demonstration, China (200803028)
文摘Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more and more attention from Chinese government and scientists. In this study, the possible effects of climate warming on the national northern limits of cropping systems, the northern limits of winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation in China from 1981 to 2007 were analyzed. Also, the possible change of crop yield caused by planting limits displacement during the periods 1950s-1981 and 1981-2007 was compared and discussed. The recognized calculation methods of agricultural climatic indices were employed. According to the indices of climatic regionalization for cropping systems, the national northern limits of cropping systems, winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation during two periods, including the 1950s-1980 and 1981-2007, were drawn with ArcGIS software. Compared with the situation during the 1950s- 1980, the northern limits of double cropping system during 1981-2007 showed significant spatial displacement in Shaanxi, Shanxi, Hebei, and Liaoning provinces and Beijing municipality, China. The northern limits of triple cropping system showed the maximum spatial displacement in Hunan, Hubei, Anhui, Jiangsu, and Zhejiang provinces, China. Without considering variety change and social economic factors, the per unit area grain yield of main planting patterns would increase about 54-106% if single cropping system was replaced by double cropping system, which turned out to be 27- 58% if double cropping system was replaced by triple cropping system. In Liaoning, Hebei, Shanxi, Shaanxi, Gansu, and Qinghai provinces, Inner Mongolia and Ningxia autonomous regions, China, the northern limits of winter wheat during 1981-2007 moved northward and expanded westward in different degrees, compared with those during the 1950s-1980. Taking Hebei Province as an example, the northern limits of winter wheat moved northward, and the per unit area grain yield would averagely increase about 25% in the change region if the spring wheat was replaced by winter wheat. In Zhejiang, Anhui, Hubei, and Hunan provinces, China, the planting northern limits of double rice moved northward, and the per unit area grain yield would increase in different degrees only from the perspective of heat resource. The stable- yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward in most regions, which was caused by the decrease of local precipitation in recent years. During the past 50 yr, climate warming made the national northern limits of cropping systems move northward in different degrees, the northern limits of winter wheat and double rice both moved northward, and the cropping system change would cause the increase of per unit area grain yield in the change region. However, the stable-yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward due to the decrease of precipitation.
基金National Natural Science Foundation of China(41171241)the National Basic Research Program of China(2011CB403204)
文摘Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- tions of N deposition. In our study, four treatments were designed, including a control, diurnal warming (DW), N deposition (ND), and combined warming and N deposition (WN). The effects of DW, ND, and WN on P composition were studied by 3~p nuclear magnetic resonance (3~p NMR) spectroscopy in a temperate grassland region of China. The results showed that the N deposition decreased the soil pH and total N (TN) concentration but increased the soil OIsen-P concentration. The solution-state 31p NMR analysis showed that the DW, ND and WN treatments slightly decreased the proportion of orthophosphate and increased that of the monoesters. An absence of myo-inositol phosphate in the DW, ND and WN treatments was observed compared with the control. Furthermore, the DW, ND and WN treatments significantly decreased the recovery of soil P in the NaOH-EDTA solution by 17%-20%. The principal component analysis found that the soil pH was positively correlated with the P recovery in the NaOH-EDTA solution. Therefore, the decreased soil P recovery in the DW and ND treatments might be caused by an indirect influence on the soil pH. Additionally, the soil moisture content was the key factor limiting the available P. The positive correlation of total carbon (TC) and TN with the soil P composition indicated the influence of climate warming and N deposition on the biological processes in the soil P cycling.
基金National Key Technology Support Program (2009BAC51B03)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education (2007)
文摘Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.
基金Project supported by the National Basic Research and Development Program of China(Grant No.2013CB430201)the National Natural Science Foundation of China(Grant Nos.41075058 and 41475075)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201106016)
文摘This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of "Northern wetting and Southern drying", similar to the anti-phase of the climate pattern prevailing during 1980--2000 in China's Mainland; southwestern China incurred a severe drought during 2009-20l 3. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further.
基金supported by the Pre-phase Project of the State 973 Program(2011CB411912)Gansu Natural Science Fund Project
文摘Globally climates are warming. How do desert plants of different ecotypes respond to the climate change? This paper studied the differing responses to climate warming shown by desert plants of different ecotypes through analyzing the phenology and meteorological data of 22 desert plant species growing in Minqin Desert Bo- tanical Garden in Northwest China during the period 1974-2009. The results indicate: (1) The temperature in the study area has risen quickly since 1974, and plants' growing periods became longer. The spring phenology of mesophytes advanced, and the autumn phenology of xerophytes was delayed; (2) The starting dates of spring phenophase of mesophytes and xerophytes differed significantly and both showed an advancing trend; (3) The spring phenology of mesophytes advanced by more days than that of xerophytes, whereas the autumn phenology of mesophytes was delayed by less days than that of the xerophytes; and (4) Mesophytes are more sensitive than xerophytes to rising temperature in spring and falling temperature in autumn. These findings are of value in plant management and regional introduction of different species.
文摘[Objective] The research aimed to study the variation characteristics of temperature and precipitation in Benxi area under the background of climate warming.[Method] Based on the monthly mean temperature and precipitation data of four routine meteorological stations in Benxi area from 1953 to 2010,by using linear tendency rate,linear regression equation,wavelet analysis,Mann-Kendall detection and so on,the variation characteristics of temperature and precipitation under the background of climate warming in the area were analyzed.[Result] The annual average temperature during 1953-2010 in Benxi area presented rise trend,and the linear tendency rate was 0.28 ℃/10 a.It was temperature increase trend in four seasons.The temperature rise rate in winter was the maximum and was the minimum in summer.The annual rainfall presented decrease trend,and the linear tendency rate was-18.16 mm/10 a.Except in spring,it was decrease trend in other seasons.Mann-Kendall mutation detection showed that the mutation of annual average temperature in Benxi area in recent 58 years appeared in 1986.There was no mutation phenomenon in summer.Spring mutation appeared in 1974,and autumn mutation appeared in 1987.Winter mutation was in 1981.The annual and seasonal precipitation didn’t have the mutation phenomenon.The wavelet analysis found that the annual average temperature had the periodic variations of 12-14,5-6 and 2 years in Benxi area in recent 58 years.The annual rainfall had the periodic fluctuations of 8-12,5-6 and 2 years.[Conclusion] The research provided the scientific basis for exploration and sustainable development of the climate resources in the mountain area.
基金supported by grants from the National Natural Science Foundation of China(40371027).
文摘The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation. The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1 ℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4 %, accelerate runoff increasing rate by 8 % and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate, while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system, where extremely continental glaciers dominate.
基金Under the auspices of International Partnership Program of Chinese Academy of Sciences (No.KZCX2-YW-T06)Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-444)Major State Basic Research Development Program of China (No.2009CB421101)
文摘Tree species respond to climate change at multiple scales,such as species physiological response at fine scale and species distribution (quantified by percent area) at broader spatial scale.At a given spatial scale,species physiological response and distribution can be correlated positively or negatively.The consistency of such correlation relationships at different spatial scales determines whether species responses derived from local scales can be extrapo-lated to broader spatial scales.In this study,we used a coupled modeling approach that coupled a plot-level ecosystem process model (LINKAGES) with a spatially explicit landscape model (LANDIS).We investigated species physio-logical responses and distribution responses to climate warming at the local,zonal and landscape scales respectively,and examined how species physiological response and distribution correlated at each corresponding scale and whether the correlations were consistent among these scales.The results indicate that for zonal and warming-sensitive species,the correlations between species physiological response and distribution are consistent at these spatial scales,and therefore the research results of vegetation response to climate warming at the local scale can be extrapolated to the zonal and landscape scales.By contrast,for zonal and warming-insensitive species the correlations among different spatial scales are consistent at some spatial scales but at other scales.The results also suggest that the results of azonal species at the local scale near their distribution boundaries can not be extrapolated simply to broader scales due to stronger responses to climate warming in those boundary regions.
文摘Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the frequency and intensity of tropical cyclone are investigated. The results showed that with the climatic warming in both hemispheres, the frequency of the tropical cyclone over the western North Pacific Ocean reduces and its intensity weakens simultaneously. A possible explanation might be that the cold air invasion from the Southern Hemisphere weakens due to global warming.
基金supported by the State Key Science Research Programme for Global Change Research of China (Grant Nos. 2010CB951402 and 2010CB951404)the State Key Basic Research Development Program of China (973 Pro-gram) (Grant No. 2007 CB411507)the National Natu-ral Science Foundation of China (Grant No. 40771047)
文摘Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June; the largest monthly runoffs also have an increment of about 15 percent related to before 1980; April-June runoff increased from the 60 percent of the annual runoff before 1980 to nearly 70 percent after 1990. The long-term trend shows temperature and precipitation increased mainly in the winter, but the rainfall declined in summer; hydrological process is manifested by the rising runoff in May and decreasing in June. Warming and the increase of winter and spring snowcover would lead to increased snowmelt, increasing the spring-flood hazards and the maximum flood discharge with disastrous consequences. The changed hydrological patterns caused by climate change have already impacted the urban water supply and agricultural and livestock production along the river.
文摘Background: Treeline dynamics have inevitable impacts on the forest treeline structure and composition. The present research sought to estimate treeline movement and structural shifts in response to recent warming in Cehennemdere, Turkey. After implementing an atmospheric correction, the geo-shifting of images was performed to match images together for a per pixel trend analysis. We developed a new approach based on the NDVI, LST(land surface temperature) data, air temperature data, and forest stand maps for a 43-year period. The forest treeline border was mapped on the forest stand maps for 1970, 1992, 2002, and 2013 to identify shifts in the treeline altitudes, and then profile statistics were calculated for each period. Twenty sample plots(10 × 10 pixels) were selected to estimatethe NDVI and LST shifts across the forest timberline using per-pixel trend analysis and non-parametric Spearman’s correlation analysis. In addition, the spatial and temporal shifts in treeline tree species were computed within the selected plots for four time periods on the forest stand maps to determine the pioneer tree species.Results: A statistically significant increasing trend in all climate variables was observed, with the highest slopein the monthly average mean July temperature(tau = 0.62, ρ < 0.00). The resultant forest stand maps showed a geographical expansion of the treeline in both the highest altitudes(22 m–45 m) and the lowest altitudes(20 m–105 m) from 1970 to 2013. The per pixel trend analysis indicated an increasing trend in the NDVI and LST values within the selected plots. Moreover, increases in the LST were highly correlated with increases in the NDVIbetween 1984 and 2017(r = 0.75, ρ < 0.05). Cedrus libani and Juniperus communis app. were two pioneer tree species that expanded and grew consistently on open lands, primarily on rocks and soil-covered areas, from 1970 to 2013.Conclusion: The present study il ustrated that forest treeline dynamics and treeline structural changes can be detected using two data sources. Additionally, the results will have a significant contribution to and implication for treeline movement studies and forest landscape change investigations attempting to project climate change impacts on tree species in response to climate warming. The results will assist forest managers in establishing some developmentaladaptation strategies for forest treeline ecotones.
基金The project is fully funded by the Natural Science Foundation of China Program(Grant Nos.42001052 and 41871052)Startup Research Funding of Northeast Forestry University for Chengdong Outstanding Youth Scholarship(YQ2020-10)+1 种基金Chengdong Leadership(LJ2020-01)the State Key Laboratory of Frozen Soils Engineering Open Fund Project(Grant No.SKLFSE202008).
文摘In boreal forest ecosystems, permafrost and forest types are mutually interdependent;permafrost degradation impacts forest ecosystem structure and functions. The Xing’an permafrost in Northeast China is on the southern margin of the Eastern Asia latitudinal permafrost body. Under a warming climate, permafrost undergoes rapid and extensive degradation. In this study, the frost-number (Fn) model based on air temperatures and ground surface temperatures was used to predict the distribution of the Xing’an permafrost, and, temporal and spatial changes in air and ground-surface temperatures from 1961 to 2019 are analyzed. The results show that Northeast China has experienced a rapid and substantial climate warming over the past 60 years. The rises in mean annual air and mean annual ground-surface temperatures were higher in permafrost zones than those in the seasonal frost zone. The frost numbers of air and ground-surface temperatures were calculated for determining the southern limit of latitudinal permafrost and for permafrost zonation. The southern limits of discontinuous permafrost, sporadic permafrost, and latitudinal permafrost moved northward significantly. According to the air-temperature frost-number criteria for permafrost zoning, compared with that in the 1960s, the extent of Xing’an permafrost in Northeast China had decreased by 40.6% by the 2010s. With an average rate of increase in mean annual air temperatures at 0.03 ℃ a^(−1), the extent of permafrost in Northeast China will decrease to 26.42 × 10^(4) by 2020, 14.69 × 10^(4) by 2040 and to 11.24 × 10^(4) km^(2) by 2050. According to the ground-surface temperature frost-number criteria, the southern limit of latitudinal permafrost was at the 0.463. From the 1960s to the 2010s, the extent of latitudinal permafrost declined significantly. Due to the nature of the ecosystem-protected Xing’an-Baikal permafrost, management and protection (e.g., more prudent and effective forest fire management and proper logging of forests) of the Xing’an permafrost eco-environment should be strengthened.
基金Key Research Planning Project of the National Natural Science Foundation (90211010)
文摘Climate changes in Guangdong are studied based on temperature data of 86 meteorological stations in Guangdong Province during 1961 – 2000, temperature data in Guangzhou during 1908 – 2002, and sea level data in the South China Sea during 1958 – 2001. Significant climate warming and sea level rise in Guangdong is demonstrated. Possible influences of climate warming on agriculture in Guangdong are discussed in terms of thermal resources, crop and breed layout, crop yield, diseases, insect pests and weeds as well as agrometeorological disasters, etc. In the final part, agricultural strategies of mitigating and adapting to the climate changes are given.
基金Key project from Natural Science Foundation of China (40231009)
文摘Based on temperature data in Guangdong in the past 50years, statistical methods are used to analyze the characteristics of temperature in spatial and temporal variation. The results show that land surface temperature warms by 0.16℃/1 0a in Guangdong. The range of warming was lower than the average of nationwide and global land surface. Furthermore, the temperature has a larger increase tendency in winter and spring and coastal areas than in summer and autumn and inland areas. Climate zones move towards the north obviously. North tropical zone is expanding, south subtropical zone is reducing and central subtropical zone is relatively stable. Under the global climate warming, characteristics of climate warming in Guangdong were influenced by atmosphere general circulation, sea surface temperature and human activities etc.
文摘Based on the analysis of phenological variation characters of Populus simonii in spring and autumn in Liaohe River Delta during 1989-2009,the relationship model between phenophase difference and temperature variation was constructed,and the responses of phenophase to the changes of temperature and critical temperature duration were analyzed under the background of climate change.The results showed that spring phenophase in Liaohe River Delta in recent 21 years occurred a little earlier without obvious trend feature,and spring phenophase change was mainly affected by temperature fluctuation,with the nonlinear relationship between them.Meanwhile,autumn phenophase was significantly delayed and mainly determined by the time of temperature dropped to a certain index.