The Yangtze Delta is one of the economically most developed areas in China. It is located in the eastern China monsoon region. Archaeological excavations and environment-archaeology studies over many yea...The Yangtze Delta is one of the economically most developed areas in China. It is located in the eastern China monsoon region. Archaeological excavations and environment-archaeology studies over many years in this region provide exceptional information about climate changes, development of human civilization and also human-environment interactions. Archaeological excavations made in the study region reveal that the development of Neolithic cultures is not continuous, which may be a result of extreme climatic events. The analysis of 14 C-dated buried paleotrees, peat and shell ridges show the rise and fall of human civilization in the study area. The research results presented in this paper confirm that human civilization collapsed six times in the Yangtze Delta, matching six high sea level epoches, peat accumulation and buried paleotrees formation periods respectively. This indicates that human activities in the Yangtze Delta are controlled by local climate changes and changing hydrological conditions. The collapse of the Liangzhu culture (5000 aBP-3800 aBP) in about 4000 aBP, after a tremendous flooding event, followed by a relatively backward Maqiao culture (3800 aBP-3200 aBP) confused researchers and aroused their great interest. The research results in this paper show that the collapse of the Liangzhu culture is a result of several factors, for example war and food shortage, but the flooding event occurred in the late Liangzhu culture epoch is the main factor therein.展开更多
Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta...Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.展开更多
Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood dis...Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood discharge and the maximum high summer temperature. The research results indicate that the flood magnitudes increased during the transition from the medieval warm interval into the early Little Ice Age. Fluctuating climate changes of the Little Ice Age characterized by arid climate events followed by the humid and cold climate conditions give rise to the frequent flood hazards. Low-lying terrain made the study region prone to the flood hazards, storm tide and typhoon. MK analysis reveals that the jumping point of the time series of the flood discharge changes occurred in the mid-1960s, that of the maximum summer temperature changes in the mid-1990s, and the exact jump point in 1993. The flood discharge changes are on negative trend before the 1990s, they are on positive tendency after the 1990s; the maximum high summer temperature changes are on negative trend before the 1990s and on positive tendency after the 1990s. These results indicate that the trend of flood discharge matches that of the maximum high summer temperature in the Yangtze Delta. The occurrence probability of the maximum high summer temperature will be increasing under the climatic warming scenario and which will in turn increase the occurrence probability of the flood events. More active solar action epochs and the higher sea surface temperature index (SST index) of the south Pacific Ocean area lying between 4 o N-4 o S and 150 o W-90 o W correspond to increased annual precipitation, flood discharge and occurrence frequency of floods in the Yangtze Delta. This is partly because the intensified solar activities and the higher SST index give rise to accelerated hydrological circulation from ocean surface to the continent, resulting in increased precipitation on the continent.展开更多
Agriculture and forestry are vital sectors providing services, food and other environmental benefits that could be most affected by the impact of climate change (CC). This study analysed the impact of CC on forestry a...Agriculture and forestry are vital sectors providing services, food and other environmental benefits that could be most affected by the impact of climate change (CC). This study analysed the impact of CC on forestry and agriculture in a typical UK rural environment. The study interrogates this complex question using the Perception Based Analysis (PBA) methodological approach. Data analysis utilized chi square test and one-way analysis of variance (Anova) in comparing the impact of climate change and human factors on forest and agricultural ecosystems, (significance level α = 5%), calculated ρ = 0.36 > 0.05. This non-significant ρ value suggests that the null hypothesis Ho “climate change is responsible for the changes in forest and agricultural ecosystem in the case study area” could be true.展开更多
Climate change is becoming a serious issue nowadays.There are profound environmental,economic and political implications of global warming. Ecosystems,from mountains to oceans and from the poles to the tropics,are und...Climate change is becoming a serious issue nowadays.There are profound environmental,economic and political implications of global warming. Ecosystems,from mountains to oceans and from the poles to the tropics,are undergoing rapid change.The cost will be borne by all,but especially by the展开更多
Neolithic site sections, natural sections and other proxy indicators like paleotrees and peat are collected for further understanding the environmental changes during the past 10,000 years in the Yangtze Delta region....Neolithic site sections, natural sections and other proxy indicators like paleotrees and peat are collected for further understanding the environmental changes during the past 10,000 years in the Yangtze Delta region. The results indicate that cultural interruption in the Yangtze Delta was the result of water expansion induced by climatic changes like more precipitation. For fi'agile human mitigation to the natural hazards in the Neolithic cultural period, environmental changes usually exerted tremendous influences on human activities, havocking the human civilization, which is meaningful for human mitigation to natural hazards under the present global warming. At the same time, some uncertainties in reconstruction ofoaleo-environmental changes were discussed in the text.展开更多
A coastal historical evolution of the Yangtze River Delta was discussed in this paper on the basis of the historical data of the coastal zone and an estimation was made for the future change of the coast The emphasi...A coastal historical evolution of the Yangtze River Delta was discussed in this paper on the basis of the historical data of the coastal zone and an estimation was made for the future change of the coast The emphasis was put on the future climate change that will have influence on the sea wall, coastal navigation and freshwater resources in the Delta It was also pointed out that the global warming and precipitation increase in the Yangtze River Valley may exert more impact on the zone In addition, some measures describing how to adapt to the climate change and reduce its impact were put forward展开更多
ABSTRACT: The potential evapotranspiration of specific crops in the Changjiang Delta is calculated by using Pen-man-Monteith method, and an agricultural water consumption model in the area is developed on the basis of...ABSTRACT: The potential evapotranspiration of specific crops in the Changjiang Delta is calculated by using Pen-man-Monteith method, and an agricultural water consumption model in the area is developed on the basis of agricultural production situation. This model has higher precision compared with actual data and can reflect the actual status of agriculture water need. Considering the meteorological, hydrological, economical development situation of the Changjiang Delta, this paper calculates and analyzes the volumes of agricultural water consumption in 2000, 2010, 2030 and 2050 under different climate change conditions and different development speeds of urbanization in future. The result shows agriculture water demand increases with temperature rising and decreases obviously with cultivated area reducing. For the Changjiang Delta, the volume of agricultural water consumption in the future will less than that of present.展开更多
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w...The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.展开更多
The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP ...The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP in the Yangtze River Delta from 2000 to 2020 were analyzed based on the soil respiration model.The driving influences of ecosystem structure evolution,temperature,rainfall,and human activities on NEP were studied.The results show that the NEP shows an overall distribution pattern of high in the southeast and low in the northwest.The area of carbon sinks is larger than that of the carbon sources.NEP spatial heterogeneity is significant.NEP change trend is basically unchanged or significantly better.The future change trend in most areas will be continuous decrease.Compared with temperature,NEP are more sensitive to precipitation.The positive influence of human activities on NEP is mainly observed in north-central Anhui and northern Jiangsu coastal areas,while the negative influence is mainly found in highly urbanized areas.In the process of ecosystem structure,the contribution of unchanged areas to NEP change is greater than that of changed areas.展开更多
Global climate change creates critical challenges with increasing temperature,reducing snowpack,and changing precipitation for water,energy,and food,as well as ecosystem processes at regional scales.Ecosystem services...Global climate change creates critical challenges with increasing temperature,reducing snowpack,and changing precipitation for water,energy,and food,as well as ecosystem processes at regional scales.Ecosystem services provide life support,goods,and natural resources from water,energy,and food,as well as the environments.There are knowledge gaps from the lack of conceptual framework and practices to interlink major climate change drivers of water resources with water-energy-food nexus and related ecosystem processes.This paper provided an overview of research background,developed a conceptual framework to bridge these knowledge gaps,summarized California case studies for practices in cross sector ecosystem services,and identified future research needs.In this conceptual framework,climate change drivers of changing temperature,snowpack,and precipitation are interlinked with life cycles in water,energy,food,and related key elements in ecosystem processes.Case studies in California indicated climate change affected variation in increasing temperature and changing hydrology at the regional scales.A large variation in average energy intensity values was also estimated from ground water and federal,state,and local water supplies both within each hydrological region and among the ten hydrological regions in California.The increased regional temperature,changes in snowpack and precipitation,and increased water stresses from drought can reduce ecosystem services and affect the water and energy nexus and agricultural food production,as well as fish and wildlife habitats in the Sacramento-San Joaquin Delta(Delta)and Central Valley watersheds.Regional decisions and practices in integrated management of water,energy,food,and related ecosystem processes are essential to adapt and mitigate global climate change impacts at the regional scales.Science and policy support for interdisciplinary research are critical to develop the database and tools for comprehensive analysis to fill knowledge gaps and address ecosystem service complexity,the related natural resource investment,and integrated planning needs.展开更多
Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a chan...Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a changing climate, biodiversity loss, human population growth and food production for this growing population. Agricultural intensification contributes significantly to biodiversity loss. The agricultural model for our current food production systems is mainly based on the Green Revolution, which promoted the cultivation of crops in extensive monoculture fields and intensified external inputs of agrochemicals. This model resulted in biodiversity loss, particularly in insect populations. A model based on ecological intensification as an alternative to agricultural intensification with minimized use of agro-inputs may slow the rate of biodiversity loss resulting in more sustainable agricultural ecosystems.展开更多
Wet grasslands are threatened by future climate change,yet these are vital ecosystems for both conservation and agriculture,providing livelihoods for millions of people.These biologically diverse,transitional wetlands...Wet grasslands are threatened by future climate change,yet these are vital ecosystems for both conservation and agriculture,providing livelihoods for millions of people.These biologically diverse,transitional wetlands are defined by an abundance of grasses and periodic flooding,and maintained by regular disturbances such as grazing or cutting.This study summarizes relevant climate change scenarios projected by the Intergovernmental Panel on Climate Change and identifies implications for wet grasslands globally and regionally.Climate change is predicted to alter wet grassland hydrology,especially through warming,seasonal precipitation variability,and the severity of extreme events such as droughts and floods.Changes in the diversity,composition,and productivity of vegetation will affect functional and competitive relations between species.Extreme storm or flood events will favor ruderal plant species able to respond rapidly to environmental change.In some regions,wet grasslands may dry out during heatwaves and drought.C4 grasses and invasive species could benefit from warming scenarios,the latter facilitated by disturbances such as droughts,floods,and possibly wildfires.Agriculture will be affected as forage available for livestock will likely become less reliable,necessitating adaptations to cutting and grazing regimes by farmers and conservation managers,and possibly leading to land abandonment.It is recommended that agri-environment schemes,and other policies and practices,are adapted to mitigate climate change,with greater emphasis on water maintenance,flexible management,monitoring,and restoration of resilient wet grasslands.展开更多
The world population is estimated to be 9.2 billion in 2050. To sufficiently feed these people, the total food production will have to increase 60% - 70%. Climate models predict that warmer tem-peratures and increases...The world population is estimated to be 9.2 billion in 2050. To sufficiently feed these people, the total food production will have to increase 60% - 70%. Climate models predict that warmer tem-peratures and increases in the frequency and duration of drought during the present century will have negative impact on agricultural productivity. These new global challenges require a more complex integrated agricultural and breeding agenda that focuses on livelihood improvement coupled with agro-ecosystem resilience, eco-efficiency and sustainability rather than just on crop productivity gains. Intensifying sustainability agro-ecosystems by producing more food with lower inputs, adapting agriculture to climate change, conserving agro-biodiversity through its use, and making markets to work for the small farmers are needed to address the main issues of our time. Plant breeding has played a vital role in the successful development of modern agriculture. Development of new cultivars will be required while reducing the impact of agriculture on the environment and maintaining sufficient production. Conventional plant breeding will remain the backbone of crop improvement strategies. Genetic engineering has the potential to address some of the most challenging biotic constraints faced by farmers, which are not easily addressed through conventional plant breeding alone. Protective measures and laws, especially patenting, must be moderated to eliminate coverage so broad that it stifles innovation. They must be made less restrictive to encourage research and free flow of materials and information. Small farmers have an important role in conserving and using crop biodiversity. Public sector breeding must remain vigorous, especially in areas where the private sector does not function. This will often require benevolent public/private partnerships as well as government support. Active and positive connections between the private and public breeding sectors and large-scale gene banks are required to avoid a possible conflict involving breeders’ rights, gene preservation and erosion. Plant breeding can be a powerful tool to bring “harmony” between agriculture and the environment, but partnerships and cooperation are needed to make this a reality.展开更多
The coastal strip of the Nile delta has been vulnerable to environmental hazards. Field surveys, interpretation of Landsat enhanced thematic mapper imageries (ETM), and hydrochemistry analysis of the water samples was...The coastal strip of the Nile delta has been vulnerable to environmental hazards. Field surveys, interpretation of Landsat enhanced thematic mapper imageries (ETM), and hydrochemistry analysis of the water samples was used as methods and materials to detect the hazards associated with climate change which threaten some natural protection coastal areas of the central part of the Nile Delta and assess its magnitude. The invasion of seawaters is the main hazard due to the impacts of global warming phenomena. Elimination of the coastal dunes which act as natural defenses has been accelerating the negative impacts that have been appearing clearly on low-lying lands. Planting that protected areas of the coastal strip are considered the most suitable ecosystem-based and most beneficial solution should be authorized and adopted by the local administration to preserve those areas and adapt to these disasters.展开更多
基金Knowledge Innovation Project of CAS No.KZCX3-SW-331+1 种基金 National Natural Science Foundation of ChinaNo. 40271112
文摘The Yangtze Delta is one of the economically most developed areas in China. It is located in the eastern China monsoon region. Archaeological excavations and environment-archaeology studies over many years in this region provide exceptional information about climate changes, development of human civilization and also human-environment interactions. Archaeological excavations made in the study region reveal that the development of Neolithic cultures is not continuous, which may be a result of extreme climatic events. The analysis of 14 C-dated buried paleotrees, peat and shell ridges show the rise and fall of human civilization in the study area. The research results presented in this paper confirm that human civilization collapsed six times in the Yangtze Delta, matching six high sea level epoches, peat accumulation and buried paleotrees formation periods respectively. This indicates that human activities in the Yangtze Delta are controlled by local climate changes and changing hydrological conditions. The collapse of the Liangzhu culture (5000 aBP-3800 aBP) in about 4000 aBP, after a tremendous flooding event, followed by a relatively backward Maqiao culture (3800 aBP-3200 aBP) confused researchers and aroused their great interest. The research results in this paper show that the collapse of the Liangzhu culture is a result of several factors, for example war and food shortage, but the flooding event occurred in the late Liangzhu culture epoch is the main factor therein.
基金Supported by Natural Science Foundation of Jiangsu Province,China (BK2011096)Survey of National Soil Situation and Pollution Control (GZTR20070302)
文摘Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.
基金Sino-France Cooperation Foundation (PRA E02-07) The key project of CAS+3 种基金No.KZCX3-SW-331 National Natural Science Foundation of China No.40271112 Foundation of Key Laboratory of Flood and Waterlogging and Wet Land Agriculture of Hubei Province
文摘Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood discharge and the maximum high summer temperature. The research results indicate that the flood magnitudes increased during the transition from the medieval warm interval into the early Little Ice Age. Fluctuating climate changes of the Little Ice Age characterized by arid climate events followed by the humid and cold climate conditions give rise to the frequent flood hazards. Low-lying terrain made the study region prone to the flood hazards, storm tide and typhoon. MK analysis reveals that the jumping point of the time series of the flood discharge changes occurred in the mid-1960s, that of the maximum summer temperature changes in the mid-1990s, and the exact jump point in 1993. The flood discharge changes are on negative trend before the 1990s, they are on positive tendency after the 1990s; the maximum high summer temperature changes are on negative trend before the 1990s and on positive tendency after the 1990s. These results indicate that the trend of flood discharge matches that of the maximum high summer temperature in the Yangtze Delta. The occurrence probability of the maximum high summer temperature will be increasing under the climatic warming scenario and which will in turn increase the occurrence probability of the flood events. More active solar action epochs and the higher sea surface temperature index (SST index) of the south Pacific Ocean area lying between 4 o N-4 o S and 150 o W-90 o W correspond to increased annual precipitation, flood discharge and occurrence frequency of floods in the Yangtze Delta. This is partly because the intensified solar activities and the higher SST index give rise to accelerated hydrological circulation from ocean surface to the continent, resulting in increased precipitation on the continent.
文摘Agriculture and forestry are vital sectors providing services, food and other environmental benefits that could be most affected by the impact of climate change (CC). This study analysed the impact of CC on forestry and agriculture in a typical UK rural environment. The study interrogates this complex question using the Perception Based Analysis (PBA) methodological approach. Data analysis utilized chi square test and one-way analysis of variance (Anova) in comparing the impact of climate change and human factors on forest and agricultural ecosystems, (significance level α = 5%), calculated ρ = 0.36 > 0.05. This non-significant ρ value suggests that the null hypothesis Ho “climate change is responsible for the changes in forest and agricultural ecosystem in the case study area” could be true.
文摘Climate change is becoming a serious issue nowadays.There are profound environmental,economic and political implications of global warming. Ecosystems,from mountains to oceans and from the poles to the tropics,are undergoing rapid change.The cost will be borne by all,but especially by the
基金Key Project of the National Natural Science Foundation of China, No.90411015 Foundation of Nanjing Institute of Geography and Limnology, CAS, No.S260018+2 种基金 National Natural Science Foundation of China, No.40271103 Open Foundation of the State Key Laboratory of Loess and Quaternary Geology from the Institute of Earth Environment, CAS, No. SKLLQG0503 Physical Geography of "985" Item and Foundation of Modern Analyses Center of Nanjing University
文摘Neolithic site sections, natural sections and other proxy indicators like paleotrees and peat are collected for further understanding the environmental changes during the past 10,000 years in the Yangtze Delta region. The results indicate that cultural interruption in the Yangtze Delta was the result of water expansion induced by climatic changes like more precipitation. For fi'agile human mitigation to the natural hazards in the Neolithic cultural period, environmental changes usually exerted tremendous influences on human activities, havocking the human civilization, which is meaningful for human mitigation to natural hazards under the present global warming. At the same time, some uncertainties in reconstruction ofoaleo-environmental changes were discussed in the text.
文摘A coastal historical evolution of the Yangtze River Delta was discussed in this paper on the basis of the historical data of the coastal zone and an estimation was made for the future change of the coast The emphasis was put on the future climate change that will have influence on the sea wall, coastal navigation and freshwater resources in the Delta It was also pointed out that the global warming and precipitation increase in the Yangtze River Valley may exert more impact on the zone In addition, some measures describing how to adapt to the climate change and reduce its impact were put forward
基金Under the auspices of the Doctorate Foundation Projects of China Education Committee(No.98028432).
文摘ABSTRACT: The potential evapotranspiration of specific crops in the Changjiang Delta is calculated by using Pen-man-Monteith method, and an agricultural water consumption model in the area is developed on the basis of agricultural production situation. This model has higher precision compared with actual data and can reflect the actual status of agriculture water need. Considering the meteorological, hydrological, economical development situation of the Changjiang Delta, this paper calculates and analyzes the volumes of agricultural water consumption in 2000, 2010, 2030 and 2050 under different climate change conditions and different development speeds of urbanization in future. The result shows agriculture water demand increases with temperature rising and decreases obviously with cultivated area reducing. For the Changjiang Delta, the volume of agricultural water consumption in the future will less than that of present.
基金funded by the National Natural Science Foundation of China(42071245)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project&Science and Technology Innovation Base Construction Project(PT2107)+2 种基金the Third Xinjiang Comprehensive Scientific Survey Project Sub-topic(2021xjkk140305)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region(2022TSYCLJ0011)the K.C.Wong Education Foundation(GJTD-2020-14).
文摘The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.
基金National Key R&D Program of China,No.2018YFD1100101。
文摘The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP in the Yangtze River Delta from 2000 to 2020 were analyzed based on the soil respiration model.The driving influences of ecosystem structure evolution,temperature,rainfall,and human activities on NEP were studied.The results show that the NEP shows an overall distribution pattern of high in the southeast and low in the northwest.The area of carbon sinks is larger than that of the carbon sources.NEP spatial heterogeneity is significant.NEP change trend is basically unchanged or significantly better.The future change trend in most areas will be continuous decrease.Compared with temperature,NEP are more sensitive to precipitation.The positive influence of human activities on NEP is mainly observed in north-central Anhui and northern Jiangsu coastal areas,while the negative influence is mainly found in highly urbanized areas.In the process of ecosystem structure,the contribution of unchanged areas to NEP change is greater than that of changed areas.
文摘Global climate change creates critical challenges with increasing temperature,reducing snowpack,and changing precipitation for water,energy,and food,as well as ecosystem processes at regional scales.Ecosystem services provide life support,goods,and natural resources from water,energy,and food,as well as the environments.There are knowledge gaps from the lack of conceptual framework and practices to interlink major climate change drivers of water resources with water-energy-food nexus and related ecosystem processes.This paper provided an overview of research background,developed a conceptual framework to bridge these knowledge gaps,summarized California case studies for practices in cross sector ecosystem services,and identified future research needs.In this conceptual framework,climate change drivers of changing temperature,snowpack,and precipitation are interlinked with life cycles in water,energy,food,and related key elements in ecosystem processes.Case studies in California indicated climate change affected variation in increasing temperature and changing hydrology at the regional scales.A large variation in average energy intensity values was also estimated from ground water and federal,state,and local water supplies both within each hydrological region and among the ten hydrological regions in California.The increased regional temperature,changes in snowpack and precipitation,and increased water stresses from drought can reduce ecosystem services and affect the water and energy nexus and agricultural food production,as well as fish and wildlife habitats in the Sacramento-San Joaquin Delta(Delta)and Central Valley watersheds.Regional decisions and practices in integrated management of water,energy,food,and related ecosystem processes are essential to adapt and mitigate global climate change impacts at the regional scales.Science and policy support for interdisciplinary research are critical to develop the database and tools for comprehensive analysis to fill knowledge gaps and address ecosystem service complexity,the related natural resource investment,and integrated planning needs.
文摘Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a changing climate, biodiversity loss, human population growth and food production for this growing population. Agricultural intensification contributes significantly to biodiversity loss. The agricultural model for our current food production systems is mainly based on the Green Revolution, which promoted the cultivation of crops in extensive monoculture fields and intensified external inputs of agrochemicals. This model resulted in biodiversity loss, particularly in insect populations. A model based on ecological intensification as an alternative to agricultural intensification with minimized use of agro-inputs may slow the rate of biodiversity loss resulting in more sustainable agricultural ecosystems.
文摘Wet grasslands are threatened by future climate change,yet these are vital ecosystems for both conservation and agriculture,providing livelihoods for millions of people.These biologically diverse,transitional wetlands are defined by an abundance of grasses and periodic flooding,and maintained by regular disturbances such as grazing or cutting.This study summarizes relevant climate change scenarios projected by the Intergovernmental Panel on Climate Change and identifies implications for wet grasslands globally and regionally.Climate change is predicted to alter wet grassland hydrology,especially through warming,seasonal precipitation variability,and the severity of extreme events such as droughts and floods.Changes in the diversity,composition,and productivity of vegetation will affect functional and competitive relations between species.Extreme storm or flood events will favor ruderal plant species able to respond rapidly to environmental change.In some regions,wet grasslands may dry out during heatwaves and drought.C4 grasses and invasive species could benefit from warming scenarios,the latter facilitated by disturbances such as droughts,floods,and possibly wildfires.Agriculture will be affected as forage available for livestock will likely become less reliable,necessitating adaptations to cutting and grazing regimes by farmers and conservation managers,and possibly leading to land abandonment.It is recommended that agri-environment schemes,and other policies and practices,are adapted to mitigate climate change,with greater emphasis on water maintenance,flexible management,monitoring,and restoration of resilient wet grasslands.
文摘The world population is estimated to be 9.2 billion in 2050. To sufficiently feed these people, the total food production will have to increase 60% - 70%. Climate models predict that warmer tem-peratures and increases in the frequency and duration of drought during the present century will have negative impact on agricultural productivity. These new global challenges require a more complex integrated agricultural and breeding agenda that focuses on livelihood improvement coupled with agro-ecosystem resilience, eco-efficiency and sustainability rather than just on crop productivity gains. Intensifying sustainability agro-ecosystems by producing more food with lower inputs, adapting agriculture to climate change, conserving agro-biodiversity through its use, and making markets to work for the small farmers are needed to address the main issues of our time. Plant breeding has played a vital role in the successful development of modern agriculture. Development of new cultivars will be required while reducing the impact of agriculture on the environment and maintaining sufficient production. Conventional plant breeding will remain the backbone of crop improvement strategies. Genetic engineering has the potential to address some of the most challenging biotic constraints faced by farmers, which are not easily addressed through conventional plant breeding alone. Protective measures and laws, especially patenting, must be moderated to eliminate coverage so broad that it stifles innovation. They must be made less restrictive to encourage research and free flow of materials and information. Small farmers have an important role in conserving and using crop biodiversity. Public sector breeding must remain vigorous, especially in areas where the private sector does not function. This will often require benevolent public/private partnerships as well as government support. Active and positive connections between the private and public breeding sectors and large-scale gene banks are required to avoid a possible conflict involving breeders’ rights, gene preservation and erosion. Plant breeding can be a powerful tool to bring “harmony” between agriculture and the environment, but partnerships and cooperation are needed to make this a reality.
文摘The coastal strip of the Nile delta has been vulnerable to environmental hazards. Field surveys, interpretation of Landsat enhanced thematic mapper imageries (ETM), and hydrochemistry analysis of the water samples was used as methods and materials to detect the hazards associated with climate change which threaten some natural protection coastal areas of the central part of the Nile Delta and assess its magnitude. The invasion of seawaters is the main hazard due to the impacts of global warming phenomena. Elimination of the coastal dunes which act as natural defenses has been accelerating the negative impacts that have been appearing clearly on low-lying lands. Planting that protected areas of the coastal strip are considered the most suitable ecosystem-based and most beneficial solution should be authorized and adopted by the local administration to preserve those areas and adapt to these disasters.