[Objective] The characteristics of thermal climate resources changes of agricultural production during frost period in Jianchang County were studied. [Method] By dint of Jianchang climate resources and routine numeric...[Objective] The characteristics of thermal climate resources changes of agricultural production during frost period in Jianchang County were studied. [Method] By dint of Jianchang climate resources and routine numerical statistics method, the sunlight and temperature changes trend from 1960 to 2009 in Jianchang County were analyzed. [Result] The sunshine hours and sunshine percentages during frost period in Janchang County from 1960 to 2009 tended to decrease. The climate tendency rates were -55.556 h/10 a and -2.39%/10 a respectively, 287 h and 12% of deduction in recent 50 years. There were climate transition in 1981 and 1982. And there were a shortage of 161 h and 7% of sunshine hours and sunshine percentages before and after the transition. The temperature during the frost period generally was increasing. The average temperature, average maximum and lowest temperature tendency rate were 0.386, 0.392 and 0.567 ℃/10 a. There was a growth of 1.93, 1.96 and 2.84 ℃ in recent 50 years. There were temperature transition in 1987 and 1988. The average temperature, average maximum and lowest temperature increased 1.3, 1.2 and 1.7 ℃. In recent 50 years, the sunshine resources during frost period in Jianchang were decreasing, while the thermal resources were strengthening, forming complementary of light and heat. [Conclusion] The study provided climate accordance to the development of local facility agriculture during frost period.展开更多
Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance fo...Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.展开更多
使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:...使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。展开更多
根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因。得到如...根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因。得到如下认知:夏季高原地面感热通量的气候均值为58 W m-2,近30年地面感热总体呈微弱的减小趋势。其中在1980年代初期和21世纪前10年的大部分时段,地面感热呈增大趋势,而中间时段呈波动式下降。地面感热具有准3年为主的周期振荡,1996年前后是其开始减弱的突变点。高原夏季地面潜热通量的气候均值为62 W m-2,近30年呈波动状变化并伴有增大趋势。地面潜热的周期振荡以准4年为主,地面潜热增大的突变始于2004年前后。夏季高原地面热源的气候均值为120 W m-2,其中地面感热与地面潜热对地面热源的贡献在夏季大致相当。地面热源总体呈幅度不大的减弱趋势,其中1980年代到1990年代末偏强,21世纪前6年明显偏弱,随后又转为偏强。地面热源亦呈准3年为主的周期振荡并在1997年前后发生由强转弱的突变。根据MICAPS天气图资料的识别和统计,近30来夏季高原低涡的生成频数整体呈现一定程度的线性减少趋势,低涡高发期主要集中在1980年代到1990年代中后期。低涡生成频数有准7年为主的周期振荡现象,自1990年代中期开始的低涡生成频数的减少态势在1998年前后发生了突变。夏季高原低涡生成频数与同期高原地面感热呈高度正相关,与地面潜热呈一定程度的负相关,但与同期地面热源仍呈较显著的正相关。因此,在气候尺度上,高原地面热源偏强特别是地面感热偏强的时期,对应高原低涡的多发期。本研究从气候统计的时间相关性角度揭示了高原地面加热作用对催生高原低涡乃至高原对流活动的重要性。展开更多
文摘[Objective] The characteristics of thermal climate resources changes of agricultural production during frost period in Jianchang County were studied. [Method] By dint of Jianchang climate resources and routine numerical statistics method, the sunlight and temperature changes trend from 1960 to 2009 in Jianchang County were analyzed. [Result] The sunshine hours and sunshine percentages during frost period in Janchang County from 1960 to 2009 tended to decrease. The climate tendency rates were -55.556 h/10 a and -2.39%/10 a respectively, 287 h and 12% of deduction in recent 50 years. There were climate transition in 1981 and 1982. And there were a shortage of 161 h and 7% of sunshine hours and sunshine percentages before and after the transition. The temperature during the frost period generally was increasing. The average temperature, average maximum and lowest temperature tendency rate were 0.386, 0.392 and 0.567 ℃/10 a. There was a growth of 1.93, 1.96 and 2.84 ℃ in recent 50 years. There were temperature transition in 1987 and 1988. The average temperature, average maximum and lowest temperature increased 1.3, 1.2 and 1.7 ℃. In recent 50 years, the sunshine resources during frost period in Jianchang were decreasing, while the thermal resources were strengthening, forming complementary of light and heat. [Conclusion] The study provided climate accordance to the development of local facility agriculture during frost period.
基金Project(51825802)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2018YFE0106100)supported by the National Key R&D Program of China。
文摘Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.
文摘使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。
文摘根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因。得到如下认知:夏季高原地面感热通量的气候均值为58 W m-2,近30年地面感热总体呈微弱的减小趋势。其中在1980年代初期和21世纪前10年的大部分时段,地面感热呈增大趋势,而中间时段呈波动式下降。地面感热具有准3年为主的周期振荡,1996年前后是其开始减弱的突变点。高原夏季地面潜热通量的气候均值为62 W m-2,近30年呈波动状变化并伴有增大趋势。地面潜热的周期振荡以准4年为主,地面潜热增大的突变始于2004年前后。夏季高原地面热源的气候均值为120 W m-2,其中地面感热与地面潜热对地面热源的贡献在夏季大致相当。地面热源总体呈幅度不大的减弱趋势,其中1980年代到1990年代末偏强,21世纪前6年明显偏弱,随后又转为偏强。地面热源亦呈准3年为主的周期振荡并在1997年前后发生由强转弱的突变。根据MICAPS天气图资料的识别和统计,近30来夏季高原低涡的生成频数整体呈现一定程度的线性减少趋势,低涡高发期主要集中在1980年代到1990年代中后期。低涡生成频数有准7年为主的周期振荡现象,自1990年代中期开始的低涡生成频数的减少态势在1998年前后发生了突变。夏季高原低涡生成频数与同期高原地面感热呈高度正相关,与地面潜热呈一定程度的负相关,但与同期地面热源仍呈较显著的正相关。因此,在气候尺度上,高原地面热源偏强特别是地面感热偏强的时期,对应高原低涡的多发期。本研究从气候统计的时间相关性角度揭示了高原地面加热作用对催生高原低涡乃至高原对流活动的重要性。