期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impact of Climate Warming and Drying on Crop Growing Season in Northwestern Liaoning
1
作者 Baoli SUN Ke SUN +3 位作者 Xu ZHANG Haiyan SHU Xiaotong YANG Nannan WAN 《Meteorological and Environmental Research》 CAS 2020年第3期95-98,103,共5页
Based on the observation data of the average temperature and precipitation of 8 national meteorological stations in the northwest region of Liaoning Province from April to October during 1961-2015,methods such as line... Based on the observation data of the average temperature and precipitation of 8 national meteorological stations in the northwest region of Liaoning Province from April to October during 1961-2015,methods such as linear trend estimation,moving average,standard deviation and Mann-Kendall test are used to analyze the characteristics of average temperature and precipitation during the crop growing season in northwestern Liaoning.The results show that the average temperature during the crop growing season in the study area showed an upward trend,and the climate tendency rate was 0.193 ℃/10 a( P < 0.01).The largest contribution rate to temperature increase was in September,with a climate tendency rate of 0.27 ℃/10 a;the smallest contribution rate to the temperature increase was in July,with a climate tendency rate of 0.10 ℃/10 a.The warming trend was the most obvious in the second base year,with a climate tendency rate of 0.413 ℃/10 a( P < 0.01).The temperature was the lowest in the 1970s and the highest in the 2010s.The warming trend changed suddenly in 1996,and the sudden change reached a significant level of α = 0.05 after 2002.Precipitation was generally decreased,and the climate tendency rate was -7.68 mm/10 a.The decrease in precipitation was the most in July,and the climate tendency rate was -12.08 mm/10 a.The average temperature in the four base years failed to pass the correlation significance test.Among them,it showed an increasing trend in the second and third base year and a decreasing trend in the first and fourth base year.Rainfall was the highest in the 1960s and the lowest in the 1980s.After the abrupt change in 2002,precipitation decreased significantly.The research results provide reference for effective utilization of climate resources,rational adjustment of agricultural planting structure,and improvement of ecological environment quality. 展开更多
关键词 Crop growing season TEMPERATURE PRECIPITATION Climatic tendency rate Abrupt change test
下载PDF
Variation Characteristics of Sunshine Hours and Its Reason Analysis over Loess Plateau of Shaanxi
2
作者 GAO Bei,FAN Jian-zhong,JING Yi-gang,GAO Mao-sheng Remote Sensing Information Center for Agriculture of Shaanxi Province,Xi’an 710015,China 《Meteorological and Environmental Research》 CAS 2011年第10期44-49,共6页
[Objective] The research aimed to study variation characteristics of sunshine hours over Loess Plateau of Shaanxi during 1961-2010.[Method] By using the climate tendency rate,climate trend coefficient and linear corre... [Objective] The research aimed to study variation characteristics of sunshine hours over Loess Plateau of Shaanxi during 1961-2010.[Method] By using the climate tendency rate,climate trend coefficient and linear correlation,the temporal and spatial variation characteristics of sunshine hours in Loess Plateau of Shaanxi in recent 50 years were analyzed.Moreover,the main reason for inducing variation of sunshine hours in the zone was discussed.[Result] In recent 50 years,the variation of annual sunshine hours in Loess Plateau of Shaanxi mainly presented decrease trend.The decrease zones were mainly located in windy desert region along the Great Wall line,central loess hilly region,most areas of plateau remains region and most areas of arid plateau region in north Weihe River.The increase zones were mainly located in west and northeast plateau remains region,southwest plateau remains region,some areas of arid plateau region in north Weihe River.Seen from four-season variation trend,except in spring,the sunshine hours in other seasons presented varying decrease trends.The decrease amplitude in summer was 24.34 h/10 a,and was the most significant.The second one was-16.62 h/10 a in winter.The decrease amplitude in winter was 3.55 h/10 a,and was unobvious.Seen from spatial variation,the annual sunshine hours presented significant increase trend in Mizhi of loess hilly region and significant decrease trend in Dingbian,Shenmu of windy desert region along the Great Wall line,Qingjian,Yanchuan of plateau remains region,Longxian,Fengxiang,Chunhua and Hancheng of arid plateau region in north Weihe River.There was no obvious variation trend in other research zones.The annual and four-season sunshine hours all presented negative correlations with rainfall,relative humidity,total cloud amount,low cloud amount,water vapor pressure and fog days.The sunshine hours presented positive correlation with visibility.The correlation coefficients between sunshine hours and relative humidity,rainfall,total cloud amount,water vapor pressure,fog days and visibility were all bigger in each region.[Conclusion] The research provided basis for analyzing climate variation over Loess Plateau of Shaanxi. 展开更多
关键词 Loess Plateau of Shaanxi Sunshine hours Variation characteristic climate tendency rate Trend coefficient China
下载PDF
Change Trends of Accumulated Temperature and Effects on Agricultural Production in Shenyang during Recent 58 Years 被引量:1
3
作者 YANG Li-li LIU Feng-zhi JIANG Miao 《Meteorological and Environmental Research》 CAS 2011年第1期35-38,42,共5页
[Objective] The aim was to study the change trend of accumulated temperature in Shenyang in recent 58 years, as well as its effect on agricultural production. [Method] Based on the surface temperature data in Shenyang... [Objective] The aim was to study the change trend of accumulated temperature in Shenyang in recent 58 years, as well as its effect on agricultural production. [Method] Based on the surface temperature data in Shenyang, the change trends of ≥0 ℃ and ≥10 ℃ accumulated temperature in Shenyang in recent 58 years were analyzed by means of climatic statistics method, and the effects of accumulated temperature variation on agricultural production were discussed. [Result] In recent 58 years, the first day with temperature ≥0 ℃ advanced 10 d, and the last day put off slightly, while sustained days prolonged 13 d, and ≥0 ℃ accumulated temperature increased by 343 ℃·d; meanwhile, the first day with temperature ≥10 ℃ advanced 9 d, and the last day put off 8 d, while sustained days prolonged 16 d, and ≥10 ℃ accumulated temperature increased by 370 ℃·d; compared with the first 20 years, sustained days with temperature ≥0 ℃ and ≥10 ℃ prolonged 9 d in the last 20 years, and ≥0 ℃ and ≥10 ℃ accumulated temperature increased by 196 and 202 ℃·d, respectively. In addition, the increase of heat resources affected agricultural production in Shenyang. [Conclusion] The study could provide theoretical foundation for grasping heat resources variation and adjusting agriculture distribution. 展开更多
关键词 Shenyang Accumulated temperature Climatic tendency Change trend China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部