The construction of fully glazed commercial building facades responsible for high energy consumption has become a common architectural practice worldwide irrespective of the climate.This paper presents the methodology...The construction of fully glazed commercial building facades responsible for high energy consumption has become a common architectural practice worldwide irrespective of the climate.This paper presents the methodology to optimize the Window to Wall Ratio(WWR)with and without daylight utilization to reduce energy consumption in office buildings for the climate of Lahore,Pakistan,using a simulation tool COMFEN.The impacts of solar heat and daylight entering through the building façade with reference to different WWR and orientation were explored for the selection of optimum WWR.The optimum WWR was selected on the basis of least energy consumption whilst achieving a threshold lighting level.When daylight is not utilized,the energy demand is minimized by the lowest possible WWR.With daylight utilization,energy demand is optimized by use of WWRs of 13%to 30%according to orientation.Optimum WWR with daylight utilization offered a more balanced solution.The methodology used in this study can be applied to any location around the world to find optimum WWR for any glazing type.展开更多
Twenty-six sequences of grades of dryness/wetness and a combined sequence of indexes of winter temperature since A.D. 1471 in China were adopted as our data. The fluctuations of variability of precipitation and mean t...Twenty-six sequences of grades of dryness/wetness and a combined sequence of indexes of winter temperature since A.D. 1471 in China were adopted as our data. The fluctuations of variability of precipitation and mean temperature are statistically significant from analyses. It has been found that in middle latitudes of eastern China the distribution of the relation between mean temperature and interannual variability of precipitation in historical time forms a rather complex regional pattern, and the correlation coefficients are not unique in signs. But the negative correlations are dominant either in extent or in magnitude. The authors provide evidence that Little Ice Age was a time of more frequent extremes and support the idea that the climatic instability is above normal in cool periods.展开更多
A continuous Permian-Triassic boundary (PTB) section has been found and studied for the first time in Xiushui, Jiangxi Province, South China. Evidence for a large sealevel fall has been found in the horizon of 0.8 m...A continuous Permian-Triassic boundary (PTB) section has been found and studied for the first time in Xiushui, Jiangxi Province, South China. Evidence for a large sealevel fall has been found in the horizon of 0.8 m below the PTB, from the beginning of Hindeodus changxingensis zone (correlatable to Hindeodus typicalis Zone of the Meishan section). Sedimentary record indicates that the sea level kept at Iowstand, or occasionally rose slowly during the whole Hindeodus parvus zone, except another substantial sea-level fall in early H. parvus zone. It began a quick rise from the beginning of Isarcicella staeschei zone, kept rising for the whole/, staeschei zone, and probably caused the stagnation of sea water. The first severe change in the biota, marked by the sudden disappearance of all steno- tropic organisms such as fusulinids and dasycladacians, happened at the same time as the first sea-level fall, and is regarded as the first and main episode of the end-Permian mass extinction in this area. A microbe-dominated biota followed the first extinction, and spanned the late H. changxingensis zone and the whole H. parvus zone. All the microbes and some other eurytropic organisms including gastropods and ostracods disappeared at the end of the H. parvus zone, and the following biota in the/. staeschei zone is very simple. The coevality of the main sea-level fall and the main extinction episode might be causal: both of them might be caused by a drastic climatic cooling.展开更多
文摘The construction of fully glazed commercial building facades responsible for high energy consumption has become a common architectural practice worldwide irrespective of the climate.This paper presents the methodology to optimize the Window to Wall Ratio(WWR)with and without daylight utilization to reduce energy consumption in office buildings for the climate of Lahore,Pakistan,using a simulation tool COMFEN.The impacts of solar heat and daylight entering through the building façade with reference to different WWR and orientation were explored for the selection of optimum WWR.The optimum WWR was selected on the basis of least energy consumption whilst achieving a threshold lighting level.When daylight is not utilized,the energy demand is minimized by the lowest possible WWR.With daylight utilization,energy demand is optimized by use of WWRs of 13%to 30%according to orientation.Optimum WWR with daylight utilization offered a more balanced solution.The methodology used in this study can be applied to any location around the world to find optimum WWR for any glazing type.
文摘Twenty-six sequences of grades of dryness/wetness and a combined sequence of indexes of winter temperature since A.D. 1471 in China were adopted as our data. The fluctuations of variability of precipitation and mean temperature are statistically significant from analyses. It has been found that in middle latitudes of eastern China the distribution of the relation between mean temperature and interannual variability of precipitation in historical time forms a rather complex regional pattern, and the correlation coefficients are not unique in signs. But the negative correlations are dominant either in extent or in magnitude. The authors provide evidence that Little Ice Age was a time of more frequent extremes and support the idea that the climatic instability is above normal in cool periods.
基金supported by the National Natural Scientific Foundation of China (Nos. 40472015 and 40802001)the State Key Laboratory of Modern Paleontology and Stratigraphy (No. 083113)+1 种基金the postdoctoral funds of China (No. 20070420523)the State Key Laboratory of Geological Processes and Mineral Resources (GPMR200701)
文摘A continuous Permian-Triassic boundary (PTB) section has been found and studied for the first time in Xiushui, Jiangxi Province, South China. Evidence for a large sealevel fall has been found in the horizon of 0.8 m below the PTB, from the beginning of Hindeodus changxingensis zone (correlatable to Hindeodus typicalis Zone of the Meishan section). Sedimentary record indicates that the sea level kept at Iowstand, or occasionally rose slowly during the whole Hindeodus parvus zone, except another substantial sea-level fall in early H. parvus zone. It began a quick rise from the beginning of Isarcicella staeschei zone, kept rising for the whole/, staeschei zone, and probably caused the stagnation of sea water. The first severe change in the biota, marked by the sudden disappearance of all steno- tropic organisms such as fusulinids and dasycladacians, happened at the same time as the first sea-level fall, and is regarded as the first and main episode of the end-Permian mass extinction in this area. A microbe-dominated biota followed the first extinction, and spanned the late H. changxingensis zone and the whole H. parvus zone. All the microbes and some other eurytropic organisms including gastropods and ostracods disappeared at the end of the H. parvus zone, and the following biota in the/. staeschei zone is very simple. The coevality of the main sea-level fall and the main extinction episode might be causal: both of them might be caused by a drastic climatic cooling.