期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Climatic change in Western North America during the last 15,000 years:The role of changes in the relative strengths of air masses in producing the changing climates 被引量:1
1
作者 Stuart A. Harris 《Research in Cold and Arid Regions》 2010年第5期371-383,共13页
In the Cordillera of western North America, the influence of the Pacific Interdecadal Oscillation only affects coastal areas west of the Coast Range and the lowlands of western and southern Alaska. The rest of the are... In the Cordillera of western North America, the influence of the Pacific Interdecadal Oscillation only affects coastal areas west of the Coast Range and the lowlands of western and southern Alaska. The rest of the area is subject to a climate controlled by the relative strengths of three distinct air masses, viz., the cold cA/cP air that is dominant in winter, the mP air bringing cool moist air over the mountains throughout the year, and the dry hot cT air from the deserts of the southwestern United States. The Arctic Front marks the boundary between the cA/cP air mass and the other two. Changes in the relative strengths of these air masses appear to explain the climatic changes documented throughout the region. Thus, in the last 30 years, the average position of the Arctic Front has moved north from about 53°N to 58°N, causing the warming in northern British Columbia and cooling south of Calgary, Alberta. This concept of changing positions of the air masses also appears to explain the mechanism behind the past climatic changes in this region. During the last Neoglacial event (c.1400-1900 A.D.), it appears that the cA/cP air mass had strengthened enough to push the Arctic Front south of the 49th parallel. Incursions of mP air increased with localized areas of short-term heavy snowfalls resulting in small-scale advances of glaciers in these regions. This accounts for the variability in timing and extent of these glacial advances, while the resulting increased Chinook activity produced the development of a sand sea between Medicine Hat and Regina on the southern Prairies. The cT air mass was relatively weak, permitting these changes. During the maximum of the Altithermal/Hysithermal warm event (6,000 years B.P.), the Arctic Front had retreated into the southern Yukon Territory as the cT air mass became stronger. The mP air could not move inland as easily, resulting in drier climates across the region. Prairie plants mi- grated into the southern Yukon Territory, and land snails from the eastern United States were able to migrate up the Saskatchewan River system as far as Lake Louise, Alberta. On the southern Prairies, the many small sloughs and lakes dried up. During the maximum of the Late Wisconsin Glacial event (15,000 years B.P.), the Arctic Front had moved south to the vicinity of 30°N, while there had been a southward movement of the Zone of Intertropical Convergence from the equator to about 10°S. The mP air was also very strong and dumped enormous quantities of snow in the glaciated Canadian Cordillera, but it does not appear to have moved south any distance into the northern United States, witness the limited glaciation and widespread permafrost that developed there. Instead, there is evidence for buffering of the climatic changes in the closed basins in the northern Cordillera of the contiguous United States. The source of the cT air mass had moved south into the northern part of South America, permitting an exchange of savannah biota between the two continents. An extensive area of white dune sands inundated both savannah and forest along the inland hills in Guyana. This parallels the massive changes in African climatology during the last Ice Age (Fairbridge, 1964). If these changes occurred each time there was a major glaciation in the Northern Hemisphere, this would explain the movement of biota from all terrestrial environments between the two American continents in the last 2 million years. A similar northward movement of climatic belts occurred in South America, with the cA air from Antarctica expanding northwards into southern Argentina and Chili. However paucity of data and the potential effects of El Ni o and the Southern Oscillation make it difficult toprovide details of the changes there in the present state of knowledge. This technique of studying the mechanisms of present-day climatic changes and applying the results to past climatic events has considerable potential for elucidating past climatic changes elsewhere in continental regions. This may prove particularly valuable in studying the Siberian anticyclone that is the main cause of the distribution of permafrost, but this will need international cooperation to be successful. 展开更多
关键词 Western North America palaeoclimatology mechanics of climate change Last Neoglacial Altithermal/Hypsithermal Late Wisconsin glaciation and permafrost
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部