Short-term climate reconstruction,i.e.,the reproduction of short-term(several decades)historical climatic time series based on the relationship between observed data and available longer-term reference data in a certa...Short-term climate reconstruction,i.e.,the reproduction of short-term(several decades)historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area,can extend the length of climatic time series and offset the shortage of observations.This can be used to assess regional climate change over a much longer time scale.Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5(CMIP5)dataset for the period of 1850–2000,the Climatic Research Unit(CRU)dataset for the period of 1901–2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region(TMR)of China during the period of 1961–2011,we calibrated and validated monthly average temperature(MAT)and monthly accumulated precipitation(MAP)in the TMR using the delta,physical scaling(SP)and artificial neural network(ANN)methods.Performance and uncertainty during the calibration(1971–1999)and verification(1961–1970)periods were assessed and compared using traditional performance indices and a revised set pair analysis(RSPA)method.The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables,different data sources,and/or different methods used.According to traditional performance indices,both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961–1999.However,the results differed from those obtained by the RSPA method.This showed that the CRU dataset produced a low degree of uncertainty(positive connection degree)during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset.Overall,the calibrated and verified MAP had a high degree of uncertainty(negative connection degree)regardless of the dataset or reconstruction method used.Therefore,the reconstructed time series of MAT for the period of 1850(or 1901)–1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study.The results of this study will be useful for short-term(several decades)regional climate reconstruction and longer-term(100 a or more)assessments of regional climate change.展开更多
A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochr...A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.展开更多
One way of deducing vertical shifts in the altitudinal distribution of Colombian high-altitude páramo environments is by inferring fluctuations in the height of the local freezing level.In our research,we are imp...One way of deducing vertical shifts in the altitudinal distribution of Colombian high-altitude páramo environments is by inferring fluctuations in the height of the local freezing level.In our research,we are implementing two complementary approaches to reconstruct Late Pleistocene to Holocene changes in the freezing level height(FLH)in two of the most extensively glacier-covered areas of the northern Andes.We combined remote sensing and field-based geomorphological mapping with time-series reconstruction of changes in the altitude of the 0°C isotherm.Changes in the FLH were based on alreadypublished~30 kyr paleo-reconstructions of sea surface temperatures(SSTs)of the eastern tropical Pacific and the western tropical Atlantic,as well as on reconstructed long-term sea level changes and empirical orthogonal functions of present-day(historical)Indo-Pacific and tropical Atlantic SST anomalies.We also analyzed the probability distribution of air-sea temperature differences and the spatial distribution of grid points with SSTs above the minimum threshold necessary to initiate deep convection.We considered available historical nearsurface and free air temperature data of ERA-Interim reanalysis products,General Circulation Model(GCM)simulations,weather stations,and(deployed by our group)digital sensors,to assess the normal Environmental Lapse Rates(ELRs)at the regional to local scale.The combined maps of glacial landforms and our reconstructed FLHs provided us with a wellfounded inference of potential past glacier advances,narrowing down the coarse resolution of ice margins suggested by previous research efforts.The extent of the areas with temperatures below the freezing point suggested here for the summits of our main study site exceeds in magnitude the corresponding glacier icecaps and front advances proposed by previous studies.Conversely,our average lowest altitudes of the FLH for our comparative site are consistently above the main glacier-front advances previously suggested.Our results indicate that,compared to the maximum upward changes that likely took place over the past ca.20,000 years in our two areas of interest,the observed(present-day)upward shifts of the FLH have occurred at a rate that significantly surpasses our inferred rates.Our study helps fill the gaps in understanding past climatic changes and present trends in the region of interest and provides some insights into analyzing the signals of natural and anthropogenic climate change.展开更多
Methodological problems of climatic reconstruction for different periods of Holocene are discussed on the basis of a multiple group biological analysis on peat-sapropel sediments. The possibility of biological analysi...Methodological problems of climatic reconstruction for different periods of Holocene are discussed on the basis of a multiple group biological analysis on peat-sapropel sediments. The possibility of biological analysis is exemplified by the paleoclimatic reconstruction for Carpathian and Altai Mountain ranges. For the "Skolevsky Beskidy" national park of Carpaty the paleoclimatic scenarios have been drown up aiming at the more precise definition of climatic conditions for the period of mass mountain slope terracing. The stability of terrace systems of various designs in the current climatic conditions has been assessed. It is shown that during periods of humid climate the terraces, whose designs have been focused on drainage, were built. In periods of dry and warm climate the terrace systems capable of accumulating water were built. Both these types of terrace systems are destroyed in nowadays. Only those terrace systems are stable which were adjusted by their builders to contrast variations of precipitation. For Western Altais the paleoclimatic scenario has been done to forecast the safety of the Bronze Age kurgans (burial earth mounds) with permafrost inside the construction. In the Altay region during the Holocene it has revealed two periods of sharp cooling, the peaks of which occurred in the intervals 4500- 4300 and 2500-2300 years pronounced climatic drying ago, and two periods of 4900-4700 and 130-70 years ago. Depletion of the algae composition in the layer corresponding to the last period of drying climate indicates a very sharp change in the parameters of moisture and turning the lake into a dry swamp. Periods of cold weather may have contributed to the formation of special ritual traditions of the Sakan tribes that require the frozen ground to bury the dead. The later climate fluctuations identified have not affected the safety of permafrost in burial mounds constructed in the V-III cc BC.展开更多
Dome Argus (Dome A) in East Antarctica is a potentially likely site to meet one of the major objectives of the International Partnerships in Ice Core Sciences (IPICS) on the oldest ice core, and thus has aroused...Dome Argus (Dome A) in East Antarctica is a potentially likely site to meet one of the major objectives of the International Partnerships in Ice Core Sciences (IPICS) on the oldest ice core, and thus has aroused wide public and scientific interest. Since 2004/2005, many glaciological investigations have been conducted in this region. These have included GPS and ground-penetrating radar surveys, snow pit and ice core drilling, stake network measurements, and meteorological observations. In this article, the main results of these glaciological investigations in the Dome A region are summarized. We present details of the surface mass balance on different timescales and its spatial variability, geochemical characteristics of the surface snow, and paleo-environment reconstruction of ice cores. Finally, perspectives on the prospects for future studies are suggested.展开更多
Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. O...Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.展开更多
The El Nino events for 1870—1989 were identified according to the sea surface temperature(SST)over the eastern equatorial Pacific(0—10°S,90—180°W)and Southern Oscillation Index.The chronicle of the El Nin...The El Nino events for 1870—1989 were identified according to the sea surface temperature(SST)over the eastern equatorial Pacific(0—10°S,90—180°W)and Southern Oscillation Index.The chronicle of the El Nino events in histori- cal time(14708—1879)was reconstructed by using of a series of proxy data such as Australian droughts,Nile floods, Peruvian floods,numbers of landing typhoon in China,cool summers in East Asia,SOI calculated from tree ring data, and El Nino events identified mainly from meteorological and oceanographical conditions along the Ecuador and Peru coast. Finally,114 El Nino events were found for the period 1470—1989.The mean return interval was 4.5 years.The fre- quency of the events seems to have a cyclical variation of 70 years.No close relationship was found between the global warming and the frequency of El Nino events.展开更多
Based on cross-dating tree rings from the Tianmu Mountain, Zhejiang Province, the tree rings α-cellulose δ13C time series was measured. By spectrum analysis, the variation of tree-ring δ13C sequence shows a quasi p...Based on cross-dating tree rings from the Tianmu Mountain, Zhejiang Province, the tree rings α-cellulose δ13C time series was measured. By spectrum analysis, the variation of tree-ring δ13C sequence shows a quasi periodicity of 4.4 years, which is coincident with the standard cycle of El Nino. After removing the long-term decrease trend of the δ13C variation related to atmospheric CO2 concentration, the response of the δ13C to climate elements was analyzed using meteorology data from a nearby weather station. The results suggest that there is a distinct relativity between high-frequency variation of tree ring δ13C series and seasonal climate parameters, e.g. temperature and precipitation, with a significant time-lag effect. In addition, the high frequency also reflects the strength change of the East Asian Monsoon. The multiple regression method was employed to reconstruct the historical climate, and to analyze the climate change and trend in the last 160 years in the northern Zhejiang Province.展开更多
Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hin...Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hinders an effective interpretation of fossil pollen records and quantitative vegetation/climate reconstructions. Here, 44 surface pollen samples from forest, steppe, and meadow were used to explore pollen-vegetation-climate relationships. Cluster analysis, species indicator analysis, and principal components analysis, were used to identify the discontinuous and continuous trends in pollen dataset. In addition, correlation analysis and boosted regression trees were used to investigate primary explanatory variables, while coinertia analysis and redundancy analysis to examine pollen-vegetation and pollen-climate correlations respectively. Our results show that:(1) vegetation can be well represented by surface pollen assemblages, i.e. forest is characterized by a high proportion of tree pollen(>70%) dominated by Betula(>40%) along with Alnus, Larix, and Pinus, whereas Steppe by herb pollen(>80%),dominated by Artemisia, Chenopodiaceae;(2) significant correlations exist between pollen assemblages and mean annual temperature and then mean annual precipitation;(3) pollen ratios of Artemisia/Chenopodiaceae and arboreal/non-arboreal can respectively be used as good indicators of humidity and temperature in Northeast China.展开更多
Reconstructing past climate is beneficial for researchers to understand the mechanism of past climate change, recognize the context of modern climate change and predict scenarios of future climate change. Paleoclimate...Reconstructing past climate is beneficial for researchers to understand the mechanism of past climate change, recognize the context of modern climate change and predict scenarios of future climate change. Paleoclimate data assimilation(PDA), which was first introduced in 2000, is a promising approach and a significant issue in the context of past climate research. PDA has the same theoretical basis as the traditional data assimilation(DA) employed in the fields of atmosphere science, ocean science and land surface science. The main aim of PDA is to optimally estimate past climate states that are both consistent with the climate signal recorded in proxy and the dynamic understanding of the climate system through combining the physical laws and dynamic mechanisms of climate systems represented by climate models with climate signals recorded in proxies(e.g., tree rings, ice cores). After investigating the research status and latest advances of PDA abroad, in this paper, the background, concept and methodology of PAD are briefly introduced. Several special aspects and the development history of PAD are systematically summarized. The theoretical basis and typical cases associated with three frequently-used PAD methods(e.g., nudging, particle filter and ensemble square root filter) are analyzed and demonstrated. Finally, some underlying problems in current studies and key prospects in future research related to PDA are proposed to provide valuable thoughts on and a scientific basis for PDA research.展开更多
Quantitative reconstructions of the mean July temperature and annual precipitation are performed based on pollen percentage contents from surface and stratum pollen samples,together with vertical meteorological observ...Quantitative reconstructions of the mean July temperature and annual precipitation are performed based on pollen percentage contents from surface and stratum pollen samples,together with vertical meteorological observations across 700-2800 m in Dajiuhu,Shennongjia in Hubei Province of China.Canonical correspondence analysis and robust locally weighted regression of surface pollen samples are employed to investigate the relationship between plants and climate,and to build the seven pollen-climate response surface functions. Reconstructed results of the stable type assemblage exhibit the climate evolution since the Late-Glacial Period, including the B(?)lling-Aller(?)d warm episode,Younger Dryas cold episode,Climatic Optimum,and cold events in 8 and 6.5 ka BP.The ranges of the mean July temperature and annual precipitation have been about 5℃and 300 mm since the Late-Glacial Period.Analysis of temperature and humidity reveals that Climatic Optimum with high temperature and precipitation occurred during early Holocene and former mid-Holocene,corresponding to the high resolution records in the low latitude region.The results indicate that the pollen-climate response surface functions are capable to valuate the comprehensive influence of temperature and precipitation on pollen content and can be used to reconstruct the past climate from pollen data.展开更多
To make a reliable reconstruction of past climate from soil-surface modern pollen,it is necessary to reduce the sources of error.In this paper,pollen percentages of the sub-continental scale modern pollen-climate data...To make a reliable reconstruction of past climate from soil-surface modern pollen,it is necessary to reduce the sources of error.In this paper,pollen percentages of the sub-continental scale modern pollen-climate dataset from China and Mongolia(with 68%soil-surface samples)are homogenized at various spatial scales.A tailored calibration-set is then applied to lake sediment-surface pollen assemblages from north-central China to evaluate their predictive power.Results indicate that spatial homogenization of modern pollen percentages can increase the proportion of inertia explained by climatic variables in CCA and improve the model performance of leave-one-out cross-validation using WA-PLS.Soil-surface pollen assemblages can thus be employed into a calibration-set for reliable climate estimation and they perform better when the calibration-set has been locally homogenized.Small-scale(e.g.,radii 2,5,or 10 km)homogenization reduces the local noise in soil-surface pollen assemblages and improves the cross-validated performance,while broader scale homogenization(more than 20 km radius)blurs the pollen-climate relationship.Lake sediment-surface pollen assemblages from close to the shore could contain pollen grains transported by rivers or from the shore vegetation and thus fail to represent regional climate well like the assemblages from the central part and deep-water area of lake.展开更多
Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SG...Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.展开更多
基金financially supported by the National Natural Science Foundation of China (41401050, 41761014)the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong Universitythe Discovery Grant of Natural Sciences and Research Council of Canada
文摘Short-term climate reconstruction,i.e.,the reproduction of short-term(several decades)historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area,can extend the length of climatic time series and offset the shortage of observations.This can be used to assess regional climate change over a much longer time scale.Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5(CMIP5)dataset for the period of 1850–2000,the Climatic Research Unit(CRU)dataset for the period of 1901–2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region(TMR)of China during the period of 1961–2011,we calibrated and validated monthly average temperature(MAT)and monthly accumulated precipitation(MAP)in the TMR using the delta,physical scaling(SP)and artificial neural network(ANN)methods.Performance and uncertainty during the calibration(1971–1999)and verification(1961–1970)periods were assessed and compared using traditional performance indices and a revised set pair analysis(RSPA)method.The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables,different data sources,and/or different methods used.According to traditional performance indices,both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961–1999.However,the results differed from those obtained by the RSPA method.This showed that the CRU dataset produced a low degree of uncertainty(positive connection degree)during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset.Overall,the calibrated and verified MAP had a high degree of uncertainty(negative connection degree)regardless of the dataset or reconstruction method used.Therefore,the reconstructed time series of MAT for the period of 1850(or 1901)–1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study.The results of this study will be useful for short-term(several decades)regional climate reconstruction and longer-term(100 a or more)assessments of regional climate change.
基金funded by the National Basic Research Program of China (973 Program) (No.2010CB950104)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No.2009S1-38)+1 种基金the Chinese Academy of Sciences (CAS) 100 Talents Project (29082762)the NSFC (Grant no.40871091)
文摘A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.
文摘One way of deducing vertical shifts in the altitudinal distribution of Colombian high-altitude páramo environments is by inferring fluctuations in the height of the local freezing level.In our research,we are implementing two complementary approaches to reconstruct Late Pleistocene to Holocene changes in the freezing level height(FLH)in two of the most extensively glacier-covered areas of the northern Andes.We combined remote sensing and field-based geomorphological mapping with time-series reconstruction of changes in the altitude of the 0°C isotherm.Changes in the FLH were based on alreadypublished~30 kyr paleo-reconstructions of sea surface temperatures(SSTs)of the eastern tropical Pacific and the western tropical Atlantic,as well as on reconstructed long-term sea level changes and empirical orthogonal functions of present-day(historical)Indo-Pacific and tropical Atlantic SST anomalies.We also analyzed the probability distribution of air-sea temperature differences and the spatial distribution of grid points with SSTs above the minimum threshold necessary to initiate deep convection.We considered available historical nearsurface and free air temperature data of ERA-Interim reanalysis products,General Circulation Model(GCM)simulations,weather stations,and(deployed by our group)digital sensors,to assess the normal Environmental Lapse Rates(ELRs)at the regional to local scale.The combined maps of glacial landforms and our reconstructed FLHs provided us with a wellfounded inference of potential past glacier advances,narrowing down the coarse resolution of ice margins suggested by previous research efforts.The extent of the areas with temperatures below the freezing point suggested here for the summits of our main study site exceeds in magnitude the corresponding glacier icecaps and front advances proposed by previous studies.Conversely,our average lowest altitudes of the FLH for our comparative site are consistently above the main glacier-front advances previously suggested.Our results indicate that,compared to the maximum upward changes that likely took place over the past ca.20,000 years in our two areas of interest,the observed(present-day)upward shifts of the FLH have occurred at a rate that significantly surpasses our inferred rates.Our study helps fill the gaps in understanding past climatic changes and present trends in the region of interest and provides some insights into analyzing the signals of natural and anthropogenic climate change.
基金supported by the Russian Foundation for Basic Research (Grant No 08-05-92223)
文摘Methodological problems of climatic reconstruction for different periods of Holocene are discussed on the basis of a multiple group biological analysis on peat-sapropel sediments. The possibility of biological analysis is exemplified by the paleoclimatic reconstruction for Carpathian and Altai Mountain ranges. For the "Skolevsky Beskidy" national park of Carpaty the paleoclimatic scenarios have been drown up aiming at the more precise definition of climatic conditions for the period of mass mountain slope terracing. The stability of terrace systems of various designs in the current climatic conditions has been assessed. It is shown that during periods of humid climate the terraces, whose designs have been focused on drainage, were built. In periods of dry and warm climate the terrace systems capable of accumulating water were built. Both these types of terrace systems are destroyed in nowadays. Only those terrace systems are stable which were adjusted by their builders to contrast variations of precipitation. For Western Altais the paleoclimatic scenario has been done to forecast the safety of the Bronze Age kurgans (burial earth mounds) with permafrost inside the construction. In the Altay region during the Holocene it has revealed two periods of sharp cooling, the peaks of which occurred in the intervals 4500- 4300 and 2500-2300 years pronounced climatic drying ago, and two periods of 4900-4700 and 130-70 years ago. Depletion of the algae composition in the layer corresponding to the last period of drying climate indicates a very sharp change in the parameters of moisture and turning the lake into a dry swamp. Periods of cold weather may have contributed to the formation of special ritual traditions of the Sakan tribes that require the frozen ground to bury the dead. The later climate fluctuations identified have not affected the safety of permafrost in burial mounds constructed in the V-III cc BC.
基金supported by the Natural Science Foundation of China (Grant no. 41330526)Natural Science Foundation of Shanghai (Grant no. 17ZR1433200)National Key R & D Program of China (Grant no. 2016YFC1400302)
文摘Dome Argus (Dome A) in East Antarctica is a potentially likely site to meet one of the major objectives of the International Partnerships in Ice Core Sciences (IPICS) on the oldest ice core, and thus has aroused wide public and scientific interest. Since 2004/2005, many glaciological investigations have been conducted in this region. These have included GPS and ground-penetrating radar surveys, snow pit and ice core drilling, stake network measurements, and meteorological observations. In this article, the main results of these glaciological investigations in the Dome A region are summarized. We present details of the surface mass balance on different timescales and its spatial variability, geochemical characteristics of the surface snow, and paleo-environment reconstruction of ice cores. Finally, perspectives on the prospects for future studies are suggested.
文摘Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.
文摘The El Nino events for 1870—1989 were identified according to the sea surface temperature(SST)over the eastern equatorial Pacific(0—10°S,90—180°W)and Southern Oscillation Index.The chronicle of the El Nino events in histori- cal time(14708—1879)was reconstructed by using of a series of proxy data such as Australian droughts,Nile floods, Peruvian floods,numbers of landing typhoon in China,cool summers in East Asia,SOI calculated from tree ring data, and El Nino events identified mainly from meteorological and oceanographical conditions along the Ecuador and Peru coast. Finally,114 El Nino events were found for the period 1470—1989.The mean return interval was 4.5 years.The fre- quency of the events seems to have a cyclical variation of 70 years.No close relationship was found between the global warming and the frequency of El Nino events.
基金This work was supported by the National Natural Science Foundation of China (Grant No.49771001)
文摘Based on cross-dating tree rings from the Tianmu Mountain, Zhejiang Province, the tree rings α-cellulose δ13C time series was measured. By spectrum analysis, the variation of tree-ring δ13C sequence shows a quasi periodicity of 4.4 years, which is coincident with the standard cycle of El Nino. After removing the long-term decrease trend of the δ13C variation related to atmospheric CO2 concentration, the response of the δ13C to climate elements was analyzed using meteorology data from a nearby weather station. The results suggest that there is a distinct relativity between high-frequency variation of tree ring δ13C series and seasonal climate parameters, e.g. temperature and precipitation, with a significant time-lag effect. In addition, the high frequency also reflects the strength change of the East Asian Monsoon. The multiple regression method was employed to reconstruct the historical climate, and to analyze the climate change and trend in the last 160 years in the northern Zhejiang Province.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0600501)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20070101)the National Natural Science Foundation of China(Grant Nos.41572353,41401228&41690113)
文摘Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hinders an effective interpretation of fossil pollen records and quantitative vegetation/climate reconstructions. Here, 44 surface pollen samples from forest, steppe, and meadow were used to explore pollen-vegetation-climate relationships. Cluster analysis, species indicator analysis, and principal components analysis, were used to identify the discontinuous and continuous trends in pollen dataset. In addition, correlation analysis and boosted regression trees were used to investigate primary explanatory variables, while coinertia analysis and redundancy analysis to examine pollen-vegetation and pollen-climate correlations respectively. Our results show that:(1) vegetation can be well represented by surface pollen assemblages, i.e. forest is characterized by a high proportion of tree pollen(>70%) dominated by Betula(>40%) along with Alnus, Larix, and Pinus, whereas Steppe by herb pollen(>80%),dominated by Artemisia, Chenopodiaceae;(2) significant correlations exist between pollen assemblages and mean annual temperature and then mean annual precipitation;(3) pollen ratios of Artemisia/Chenopodiaceae and arboreal/non-arboreal can respectively be used as good indicators of humidity and temperature in Northeast China.
基金This work was supported by the National Key Research and Development Program of China(2022YFF0801501 and 2016YFA0600500)the National Natural Science Foundation of China(41902184,42072205,and 42077414)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(311022010).
基金supported by the National Natural Science Foundation of China (Grant Nos. 91425303, 91225302)the Chinese Academy of Sciences Interdisciplinary Innovation Team Project
文摘Reconstructing past climate is beneficial for researchers to understand the mechanism of past climate change, recognize the context of modern climate change and predict scenarios of future climate change. Paleoclimate data assimilation(PDA), which was first introduced in 2000, is a promising approach and a significant issue in the context of past climate research. PDA has the same theoretical basis as the traditional data assimilation(DA) employed in the fields of atmosphere science, ocean science and land surface science. The main aim of PDA is to optimally estimate past climate states that are both consistent with the climate signal recorded in proxy and the dynamic understanding of the climate system through combining the physical laws and dynamic mechanisms of climate systems represented by climate models with climate signals recorded in proxies(e.g., tree rings, ice cores). After investigating the research status and latest advances of PDA abroad, in this paper, the background, concept and methodology of PAD are briefly introduced. Several special aspects and the development history of PAD are systematically summarized. The theoretical basis and typical cases associated with three frequently-used PAD methods(e.g., nudging, particle filter and ensemble square root filter) are analyzed and demonstrated. Finally, some underlying problems in current studies and key prospects in future research related to PDA are proposed to provide valuable thoughts on and a scientific basis for PDA research.
基金Supported by the National Natural Science Foundation of China under Grant Nos.40875043 and 40631002the Science Fund for Creative Research Groups from NSFC under Grant No.41021002
文摘Quantitative reconstructions of the mean July temperature and annual precipitation are performed based on pollen percentage contents from surface and stratum pollen samples,together with vertical meteorological observations across 700-2800 m in Dajiuhu,Shennongjia in Hubei Province of China.Canonical correspondence analysis and robust locally weighted regression of surface pollen samples are employed to investigate the relationship between plants and climate,and to build the seven pollen-climate response surface functions. Reconstructed results of the stable type assemblage exhibit the climate evolution since the Late-Glacial Period, including the B(?)lling-Aller(?)d warm episode,Younger Dryas cold episode,Climatic Optimum,and cold events in 8 and 6.5 ka BP.The ranges of the mean July temperature and annual precipitation have been about 5℃and 300 mm since the Late-Glacial Period.Analysis of temperature and humidity reveals that Climatic Optimum with high temperature and precipitation occurred during early Holocene and former mid-Holocene,corresponding to the high resolution records in the low latitude region.The results indicate that the pollen-climate response surface functions are capable to valuate the comprehensive influence of temperature and precipitation on pollen content and can be used to reconstruct the past climate from pollen data.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877459&41630753)CAS Pioneer Hundred Talents Program(Xianyong CAO)+1 种基金the National Natural Science Foundation of China(NSFC)the German Research Foundation(DFG)(Grant No.41861134030)。
文摘To make a reliable reconstruction of past climate from soil-surface modern pollen,it is necessary to reduce the sources of error.In this paper,pollen percentages of the sub-continental scale modern pollen-climate dataset from China and Mongolia(with 68%soil-surface samples)are homogenized at various spatial scales.A tailored calibration-set is then applied to lake sediment-surface pollen assemblages from north-central China to evaluate their predictive power.Results indicate that spatial homogenization of modern pollen percentages can increase the proportion of inertia explained by climatic variables in CCA and improve the model performance of leave-one-out cross-validation using WA-PLS.Soil-surface pollen assemblages can thus be employed into a calibration-set for reliable climate estimation and they perform better when the calibration-set has been locally homogenized.Small-scale(e.g.,radii 2,5,or 10 km)homogenization reduces the local noise in soil-surface pollen assemblages and improves the cross-validated performance,while broader scale homogenization(more than 20 km radius)blurs the pollen-climate relationship.Lake sediment-surface pollen assemblages from close to the shore could contain pollen grains transported by rivers or from the shore vegetation and thus fail to represent regional climate well like the assemblages from the central part and deep-water area of lake.
基金National Natural Science Foundation of China,No.40971118Physical Geography Key Disciplines Construction Subjects of Hebei Province
文摘Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.