Mt. Yulong, located in the eastern part of Tibetan Plateau, is the southmost present glaciation area both in China and Europe\|Asia continent,where distributes 19 typical sub\|tropics temperate glaciers. In the summer...Mt. Yulong, located in the eastern part of Tibetan Plateau, is the southmost present glaciation area both in China and Europe\|Asia continent,where distributes 19 typical sub\|tropics temperate glaciers. In the summer of 1999, a firn core, 10 10m long to the glacier ice, was successfully recovered in the accumulation area at the largest glacier (No.1 Baishui) on Mt. Yulong. Annual and seasonal variations of different climatic signals above the depth of 7 8m are apparent and five\|year snow accumulation can be clearly identified by the seasonal changes of isotopic and ionic composition, some higher values of electrical conductivity and pH values. These annual boundaries can be also verified by the positions of dirty refrozen ice layers at summer surface of each year. The mean annual net accumulation between the balance years of 94/95 and 97/98 are calculated to about 900mm water equivalent. The amplitude of isotopic changes becomes smaller with the increasing depth of the core and isotopic homogenization occurred below the depth of 7 8m. Concentrations of Ca 2+ and Mg 2+ are much higher than those of Na + and K +, reflecting that the air masses for precipitation came far from their marine sources and passed over a longer continental route. Cl - and Na + show well corresponding variation patterns in the firn profile,indicating their same genesis. Concentrations of SO 2- 4 and NO - 3 are low, reflecting very slight pollution caused by human activities in this area. According to the sum of net income recovered from the firn core and the estimated ablation amount, the average annual precipitation above the equilibrium line is estimated in the scope of 2250mm and 3200mm but it needed to be verified by long\|term observation of mass balance. As indicated by the trend of local climatic changes in last 50years, climatic signals in the firn core and recent observation at the terminal of glacier No.1 Baishui, the glaciers in Mt. Yulong start to advance in 1998 after continuous retreat from early 1980’s to late 1990’s.展开更多
High topographies, such as the Tibetan plateau (TP) in China, have been considered as the sensitive areas in response to global climate change. By analyzing the relationship between warming structure and altitude (...High topographies, such as the Tibetan plateau (TP) in China, have been considered as the sensitive areas in response to global climate change. By analyzing the relationship between warming structure and altitude (1 000-5 000 m) in the TP and its vicinities using the 46-year January mean observed temperature data, we found that there was a significant altitude effect of temperature warming onset time (mutation time) on the plateau and the neighboring regions: the higher the altitude, the later the climate warming happens, and vice versa. There also seems a slight altitude effect on warming magnitude: the higher the altitude, the less the warming magnitude. Therefore, the temperature warming in the high altitude area of the TP (below 5 000 m) responds to global warming less sensitively than the low-altitude neighboring areas both in onset time and magnitude, which may be mainly caused by high albedo and large thermal capacity of the ice/snow cover on the higher part of the plateau and possible heat island effect in the lower part of the plateau.展开更多
To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review pape...To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.展开更多
A regional climate model(RegCM4.3.4) coupled with an aerosol-snow/ice feedback module was used to simulate the deposition of anthropogenic light-absorbing impurities in snow/ice and the potential radiative feedback of...A regional climate model(RegCM4.3.4) coupled with an aerosol-snow/ice feedback module was used to simulate the deposition of anthropogenic light-absorbing impurities in snow/ice and the potential radiative feedback of black carbon(BC) on temperature and snow cover over the Tibetan Plateau(TP) in 1990-2009. Two experiments driven by ERA-interim reanalysis were performed, i.e., with and without aerosol-snow/ice feedback. Results indicated that the total deposition BC and organic matter(OM) in snow/ice in the monsoon season(MayeS eptember) were much more than non-monsoon season(the remainder of the year). The great BC and OM deposition were simulated along the margin of the TP in the non-monsoon season, and the higher deposition values also occurred in the western TP than the other regions during the monsoon period. BC-in-snow/ice decreased surface albedo and caused positive surface radiative forcing(SRF)(3.0-4.5 W m^(-2)) over the western TP in the monsoon season. The maximum SRF(5-6 W m^(-2)) simulated in the Himalayas and southeastern TP in the non-monsoon season. The surface temperature increased by 0.1-1.5℃ and snow water equivalent decreased by 5-25 mm over the TP, which showed similar spatial distributions with the variations of SRF in each season. This study provided a useful tool to investigate the mechanisms involved in the effect of aerosols on climate change and the water cycle in the cryospheric environment of the TP.展开更多
The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the temporal changes in the link between climatic factors and vegetation dynamics in this region u...The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the temporal changes in the link between climatic factors and vegetation dynamics in this region under the changing climate.By employing Normalized Difference Vegetation Index data, the Climatic Research Unit temperature and precipitation data,and the in-situ meteorological observations, we report the temporal and spatial variations in the relationships between the vegetation dynamics and climatic factors on the Plateau over the past three decades. The results show that from the early 1980s to the mid-1990s, vegetation dynamics in the central and southeastern part of the Plateau appears to show a closer relationship with precipitation prior to the growing season than that of temperature. From the mid-1990s, the temperature rise seems to be the key climatic factor correlating vegetation growth in this region. The effects of increasing temperature on vegetation are spatially variable across the Plateau: it has negative impacts on vegetation activity in the southwestern and northeastern part of the Plateau, and positive impacts in the central and southeastern Plateau. In the context of global warming, the changing climate condition(increasing precipitation and significant rising temperature) might be the potential contributor to the shift in the climatic controls on vegetation dynamics in the central and southeastern Plateau.展开更多
Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its...Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its direct radiative effect(DRE)over the TP by applying two horizontal resolutions of about 100 km and 25 km to the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere Land System(CAS FGOALS-f3)over a 10-year period.Compared to the AErosol RObotic NETwork observations,a high-resolution model(HRM)can better reproduce the spatial distribution and seasonal cycles of aerosol optical depth(AOD)compared to a low-resolution model(LRM).The HRM bias and RMSE of AOD decreased by 0.08 and 0.12,and the correlation coefficient increased by 0.22 compared to the LRM.An LRM is not sufficient to reproduce the aerosol variations associated with fine-scale topographic forcing,such as in the eastern marginal region of the TP.The difference between hydrophilic aerosols in an HRM and LRM is caused by the divergence of the simulated relative humidity(RH).More reasonable distributions and variations of RH are conducive to simulating hydrophilic aerosols.An increase of the 10-m wind speed in winter by an HRM leads to increased dust emissions.The simulated aerosol DREs at the top of the atmosphere(TOA)and at the surface by the HRM are–0.76 W m^(–2)and–8.72 W m^(–2)over the TP,respectively.Both resolution models can capture the key feature that dust TOA DRE transitions from positive in spring to negative in the other seasons.展开更多
By using a surface air temperature index (SATI) averaged over the eastern Tibetan Plateau (TP), investigation is conducted on the short-term climate variation associated with the interannual air warming (or cool...By using a surface air temperature index (SATI) averaged over the eastern Tibetan Plateau (TP), investigation is conducted on the short-term climate variation associated with the interannual air warming (or cooling) over the TP in each summer month. Evidence suggests that the SATI is associated with a consistent teleconnection pattern extending from the TP to central-western Asia and southeastern Europe. Associated rainfall changes include, for a warming case, a drought in northern India in May and June, and a stronger mei-yu front in June. The latter is due to an intensified upper-level northeasterly in eastern China and a wetter and warmer condition over the eastern TP. In the East Asian regions, the time-space distributions of the correlation patterns between SATI and rainfall are more complex and exhibit large differences from month to month. Some studies have revealed a close relationship between the anomalous heating over the TP and the rainfall anomaly along the Yangtze River valley appearing in the summer on a seasonal mean time-scale, whereas in the present study, this relationship only appears in June and the signal's significance becomes weaker after the long-term trend in the data was excluded. Close correlations between SATI and the convection activity and SST also occur in the western Pacific in July and August: A zonally-elongated warm tone in the SST in the northwestern Pacific seems to be a passive response of the associated circulation related to a warm SATI. The SATI-associated teleconnection pattern provides a scenario consistently linking the broad summer rainfall anomalies in Europe, central-western Asia, India, and East Asia.展开更多
The altitude effect of δ18O is essential for the study of the paleo-elevation reconstruction and possible to be solved through modern process studies. This study presents new δ18O results from southeast Tibetan Plat...The altitude effect of δ18O is essential for the study of the paleo-elevation reconstruction and possible to be solved through modern process studies. This study presents new δ18O results from southeast Tibetan Plateau along two transects, the Zayu transect and the Lhasa-Nyang transect, with δ18O data from June to September representative of monsoon period and δ18O data during the rest of the year of non-monsoon period. Altitude effect outweighs the longitude and latitude effects in determining regional δ18O variation spatially. Relevant δ18O data from previous studies in the nearby region have also been combined to comprehensively understand the influence of different moisture sources on δ18O from local scale to regional scale. The δ18O in surface water in the southeast Tibetan Plateau and its nearby regions influenced by the Indian summer monsoon shows that single dominant moisture source or simple moisture sources lead to smaller altitudinal lapse rate, whilst growing contributions from local convection to precipitation enlarge δ18O-altitude rate. It thereupon reveals the significance of the Indian summer monsoon to the altitude effect of δ18O in surface water, and the complicated effect of local convection or westerlies evolution to the variation of altitudinal lapse rate. Paleo-monsoon evolution therefore should be considered when altitude effect is applied to paleo-elevation reconstruction for the Tibetan Plateau.展开更多
Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still...Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still remains uncertain.In this study,its responses to climate change were investigated using daily weather data and agriculture data during 1961–2018.The results showed that the annual mean air temperature over the TP increased at 0.33°C per decade during 1961–2018,and the rate of warming increased with altitude,reaching 0.41°C per decade at altitudes of 4500–4700 m.The growing degree days(GDDs)increased by 9.6%during 2011–2018 compared with the 1960s,whereas low temperature degree days(LDDs)decreased by 40.3%over the same period,indicating that the thermal conditions for highland barley cultivation have improved.A strong relationship was observed between the yield of highland barley and LDDs(−0.76,p<0.001)than GDDs(0.58,p<0.001)in Xizang,where sufficient irrigation water is available from the melting of snow cover or glaciers.In Sichuan,with abundant precipitation,significant correlations were noticed between county-level barley yield and GDDs and LDDs(0.60,p<0.001;−0.65,p<0.001).In Qinghai,the dry regions,county-level yields were influenced significantly by temperature and precipitation.These results indicated that climate warming was beneficial to highland barley yield in most region of the TP,mainly due to decreased LDDs.The potential altitude at which highland barley cultivation is feasible increased by approximately 280–484 m during 2016–2018,compared with 1981–1983.In Xizang,highland barley could be cultivated up to an altitude of 4507 m a.s.l.between 2016 and 2018,and it increased to 4179 m a.s.l.in Qinghai.These results could help local government to take actions to adapt to global warming and improve food security.展开更多
The δ 18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform(TORP)is studied, with the focus on the altitude effect of δ 18O in river water during mo...The δ 18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform(TORP)is studied, with the focus on the altitude effect of δ 18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ 18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ 18O composition in plateau precipitation and river water. The δ 18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ 18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ 18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ 18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ 18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.展开更多
Most lakes have undergone significant changes on the Tibetan Plateau in recent decades,affecting water resources on the Tibetan Plateau and its surrounding areas.In this paper,we investigated the variations of 25 lake...Most lakes have undergone significant changes on the Tibetan Plateau in recent decades,affecting water resources on the Tibetan Plateau and its surrounding areas.In this paper,we investigated the variations of 25 lakes in five sub-regions on the Tibetan Plateau from 1972 to 2019 based on SRTM DEM data and Landsat imagery.We used a method to derive lake-levels based on DEM and lake boundaries delineated from Landsat imagery,and then calculated the changes in lake area,level,and volume in 1972 to 2019.We also analyzed the potential impacts of temperature,precipitation,glacial and permafrost melting in lake changes during this period.The results show that the lakes tended to shrink until 2010 in southern and western plateau,after which they began to expand gradually but the overall trend is still shrinking.Limited meltwater from glaciers and permafrost and low precipitation are the main reasons for their shrinkage.The lakes in the central plateau,northwest plateau and northeast plateau tend to expand overall.The reason for the expansion of the lakes is not only precipitation but also the melting of glaciers and permafrost.Overall,the lake changes have gone through 3 phases,namely a slight decrease during 1972-2000,a rapid increase during 2000-2010,and a slowdown in the last decade(2010-2019).Multiple factors such as temperature,precipitation,the state of glaciers and permafrost have contributed to the changes in the lake.展开更多
A striking climate warming over the Ti- betan Plateau during the last decades has been re- vealed by many studies, but evidence linking it to human activity is insufficient. By using historical ob- servations, here we...A striking climate warming over the Ti- betan Plateau during the last decades has been re- vealed by many studies, but evidence linking it to human activity is insufficient. By using historical ob- servations, here we show that the in situ climate warming is accompanied by a distinct decreasing trend of the diurnal range of surface air temperature. The ERA40 reanalysis further indicates that there seems to be a coherent warming trend near the tro- popause but a cooling trend in the lower stratosphere. Moreover, all these features can be reproduced in two coupled climate models forced by observed CO2 concentration of the 20th century but cannot be pro- duced by the fixed external conditions before the industrial revolution. These suggest that the recent climate warming over the Tibetan Plateau primarily results from the increasing anthropogenic green- house gases emissions, and impacts of the increased greenhouse gases emissions upon the climate change in the plateau are probably more serious than the rest of the world.展开更多
Seasonal δ 18O variation in water on the southeast Tibetan Plateau has been studied, showing the consistent variation pattern of δ 18O with altitude indicative of relevant atmospheric circulation processes. Study sh...Seasonal δ 18O variation in water on the southeast Tibetan Plateau has been studied, showing the consistent variation pattern of δ 18O with altitude indicative of relevant atmospheric circulation processes. Study shows a similar variation pattern of fixed-site river water δ 18O with that of the precipitation δ 18O in southeast Tibet. δ 18O in regional rivers in southeast Tibet demonstrates a gradual depletion with increasing altitude, though the rates vary seasonally. The most depleted river 18O occurs during the monsoon period, with the lowest δ 18O/altitude lapse rate. The river 18O during the westerly period is also depleted, together with low δ 18O/altitude lapse rate. The pre-monsoon rivers witness the most enriched 18O with least significant correlation coefficient with the linear regression, whilst the postmonsoon rivers witness the largest δ 18O/altitude lapse rate. Different coherence of seasonal δ 18O variation with the altitude effect is attributed to different moisture supplies. Though sampling numbers vary with seasons, the δ 18O-H linear correlation coefficients all reach the 0.05 confidence level, thus witnessing the variation features of δ 18O in seasonal river water due to the influence of atmospheric general circulation and land surface processes revealed from the altitudinal lapse rates.展开更多
Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and a...Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and analysis of climatic information. Data from previous research on 35 alpine lakes on the Tibetan Plateau were used to investigate changes in lake water level and area. In terms of temporal changes, the area of the 35 alpine lakes could be divided into five groups: rising, falling-rising, rising-falling, fluctuating, and falling. In terms of spatial changes, the area of alpine lakes in the Himalayan Mountains, the Karakoram Mountains, and the Qaidam Basin tended to decrease; the area of lakes in the Naqu region and the Kunlun Mountains increased; and the area of lakes in the Hoh Xil region and Qilian Mountains fluctuated. Changes in lake water level and area were correlated with regional changes in climate. Reasons for changes in these lakes on the Tibetan Plateau were analyzed, including precipitation and evaporation from meteorological data, glacier meltwater from the Chinese glacier inventories. Several key problems, e.g. challenges of monitoring water balance, limitations to glacial area detection, uncertainties in detecting lake water-level variations and variable region boundaries of lake change types on the Tibetan Plateau were discussed. This research has most indicative significance to regional climate change.展开更多
Climate variability is an important inherent characteristic of climate and it varies on all timescales. Through examination of temperature variability on multiple temporal scales at 63 stations over the eastern and ce...Climate variability is an important inherent characteristic of climate and it varies on all timescales. Through examination of temperature variability on multiple temporal scales at 63 stations over the eastern and central Tibetan Plateau (TP) during 1960-2008, we find decreasing trends in daily and intraannual temperature, especially in cold seasons (autumn and winter). These changes are more sensitive than those in the eastern China coastal region at the same latitude and indicate an asymmetric change of temperature, with hourly, daily, and monthly trends in cold periods stronger than those in warm periods during the recent years. The variation of interannual temperature is complex, showing an increasing trend in autumn and winter and decreasing trend in spring and summer, which is similar to those in the northern polar region. The changes of multiscale variability of temperature are mainly related to changes of atmospheric water vapor, cloudiness, anthropogenic aerosols, monsoon-driven climate, and some local factors. To find the influences of local conditions on temperature variability, we analyze the effects of altitude, topography, and urbanization. The results show that elevation is strongly and positively related to diurnal temperature range (DTR) and slightly positively related to interannual temperature variability (IVT), but intraannual temperature variability shows no clear elevation dependency. Topography and urbanization also play important roles in multiscale temperature variability. Finally, strong relationships are observed between temperature variability on each scale and different extreme indices.展开更多
近几十年中随着全球气候环境变化,青藏高原处于变暖变湿过程之中,植被生长发生了显著变化。基于卫星遥感归一化植被指数(NDVI),采用增强回归树模型(BRT)定量分析了1982—2015年影响青藏高原植被生长变化的主要环境因子的相对重要性。结...近几十年中随着全球气候环境变化,青藏高原处于变暖变湿过程之中,植被生长发生了显著变化。基于卫星遥感归一化植被指数(NDVI),采用增强回归树模型(BRT)定量分析了1982—2015年影响青藏高原植被生长变化的主要环境因子的相对重要性。结果表明:(1)整个青藏高原生长季(6—9月份)空间平均NDVI和降水呈上升趋势(1.265×10^(-4)a^(-1)和0.746 mm/a,P>0.05);温度和土壤湿度呈现显著增加趋势(0.048℃/a和3.954×10^(-4)a^(-1),P<0.01);向下短波辐射显著减小(-0.070 W m^(-2)a^(-1),P<0.01)。(2)青藏高原34.0%地区NDVI表现出显著增加趋势,主要分布在青藏高原北部大部分地区和西部部分区域;9.2%地区NDVI呈显著减小趋势,主要位于青藏高原东部地区。(3)土壤湿度、年均温、年降水和向下短波辐射分别解释了生长季NDVI变化的42%,19%,10%和9%。(4)土壤湿度、年均温、年降水和向下短波辐射对青藏高原植被生长动态影响的相对大小具有明显的空间差异特征。温度上升是青藏高原东北部和中部部分地区NDVI变化的首要因素(相对贡献率>40%),而土壤湿度增加是青藏高原西南部及东南部分地区NDVI变化的主要原因(相对贡献率>50%)。总体上,温度上升及由此所导致的冰冻圈消融引起的土壤含水量上升是近几十年青藏高原植被生长动态快速变化的主要原因。展开更多
文摘Mt. Yulong, located in the eastern part of Tibetan Plateau, is the southmost present glaciation area both in China and Europe\|Asia continent,where distributes 19 typical sub\|tropics temperate glaciers. In the summer of 1999, a firn core, 10 10m long to the glacier ice, was successfully recovered in the accumulation area at the largest glacier (No.1 Baishui) on Mt. Yulong. Annual and seasonal variations of different climatic signals above the depth of 7 8m are apparent and five\|year snow accumulation can be clearly identified by the seasonal changes of isotopic and ionic composition, some higher values of electrical conductivity and pH values. These annual boundaries can be also verified by the positions of dirty refrozen ice layers at summer surface of each year. The mean annual net accumulation between the balance years of 94/95 and 97/98 are calculated to about 900mm water equivalent. The amplitude of isotopic changes becomes smaller with the increasing depth of the core and isotopic homogenization occurred below the depth of 7 8m. Concentrations of Ca 2+ and Mg 2+ are much higher than those of Na + and K +, reflecting that the air masses for precipitation came far from their marine sources and passed over a longer continental route. Cl - and Na + show well corresponding variation patterns in the firn profile,indicating their same genesis. Concentrations of SO 2- 4 and NO - 3 are low, reflecting very slight pollution caused by human activities in this area. According to the sum of net income recovered from the firn core and the estimated ablation amount, the average annual precipitation above the equilibrium line is estimated in the scope of 2250mm and 3200mm but it needed to be verified by long\|term observation of mass balance. As indicated by the trend of local climatic changes in last 50years, climatic signals in the firn core and recent observation at the terminal of glacier No.1 Baishui, the glaciers in Mt. Yulong start to advance in 1998 after continuous retreat from early 1980’s to late 1990’s.
基金supported by the National Natural Science Foundation of China (Nos.40830743,40771187)Scientific Effort of Education Department of Shaanxi Province (No.09JK429)
文摘High topographies, such as the Tibetan plateau (TP) in China, have been considered as the sensitive areas in response to global climate change. By analyzing the relationship between warming structure and altitude (1 000-5 000 m) in the TP and its vicinities using the 46-year January mean observed temperature data, we found that there was a significant altitude effect of temperature warming onset time (mutation time) on the plateau and the neighboring regions: the higher the altitude, the later the climate warming happens, and vice versa. There also seems a slight altitude effect on warming magnitude: the higher the altitude, the less the warming magnitude. Therefore, the temperature warming in the high altitude area of the TP (below 5 000 m) responds to global warming less sensitively than the low-altitude neighboring areas both in onset time and magnitude, which may be mainly caused by high albedo and large thermal capacity of the ice/snow cover on the higher part of the plateau and possible heat island effect in the lower part of the plateau.
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciencesthe Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91637312,91437219,91637208,and 41530426)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(second phase)(Grant No.U1501501)
文摘To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.
基金supported by National Nature Science Foundation of China (41301061)Chinese Academy of Sciences (KJZD-EW-G03-04)China Meteorological Administration Special Public Welfare Research Fund (GYHY201306019)
文摘A regional climate model(RegCM4.3.4) coupled with an aerosol-snow/ice feedback module was used to simulate the deposition of anthropogenic light-absorbing impurities in snow/ice and the potential radiative feedback of black carbon(BC) on temperature and snow cover over the Tibetan Plateau(TP) in 1990-2009. Two experiments driven by ERA-interim reanalysis were performed, i.e., with and without aerosol-snow/ice feedback. Results indicated that the total deposition BC and organic matter(OM) in snow/ice in the monsoon season(MayeS eptember) were much more than non-monsoon season(the remainder of the year). The great BC and OM deposition were simulated along the margin of the TP in the non-monsoon season, and the higher deposition values also occurred in the western TP than the other regions during the monsoon period. BC-in-snow/ice decreased surface albedo and caused positive surface radiative forcing(SRF)(3.0-4.5 W m^(-2)) over the western TP in the monsoon season. The maximum SRF(5-6 W m^(-2)) simulated in the Himalayas and southeastern TP in the non-monsoon season. The surface temperature increased by 0.1-1.5℃ and snow water equivalent decreased by 5-25 mm over the TP, which showed similar spatial distributions with the variations of SRF in each season. This study provided a useful tool to investigate the mechanisms involved in the effect of aerosols on climate change and the water cycle in the cryospheric environment of the TP.
基金supported by the Key Frontier Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC043)the National Natural Science Foundation of China (Grant Nos. 41501011 and 41771012)
文摘The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the temporal changes in the link between climatic factors and vegetation dynamics in this region under the changing climate.By employing Normalized Difference Vegetation Index data, the Climatic Research Unit temperature and precipitation data,and the in-situ meteorological observations, we report the temporal and spatial variations in the relationships between the vegetation dynamics and climatic factors on the Plateau over the past three decades. The results show that from the early 1980s to the mid-1990s, vegetation dynamics in the central and southeastern part of the Plateau appears to show a closer relationship with precipitation prior to the growing season than that of temperature. From the mid-1990s, the temperature rise seems to be the key climatic factor correlating vegetation growth in this region. The effects of increasing temperature on vegetation are spatially variable across the Plateau: it has negative impacts on vegetation activity in the southwestern and northeastern part of the Plateau, and positive impacts in the central and southeastern Plateau. In the context of global warming, the changing climate condition(increasing precipitation and significant rising temperature) might be the potential contributor to the shift in the climatic controls on vegetation dynamics in the central and southeastern Plateau.
基金supported by the National Natural Science Funds of China(Grant Nos.41875133,91937302)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA2006010302)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0206)the Youth Innovation Promotion Association CAS(2020078)the International Partnership Program of Chinese Academy of Sciences(Grant No.134111KYSB20200006).
文摘Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its direct radiative effect(DRE)over the TP by applying two horizontal resolutions of about 100 km and 25 km to the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere Land System(CAS FGOALS-f3)over a 10-year period.Compared to the AErosol RObotic NETwork observations,a high-resolution model(HRM)can better reproduce the spatial distribution and seasonal cycles of aerosol optical depth(AOD)compared to a low-resolution model(LRM).The HRM bias and RMSE of AOD decreased by 0.08 and 0.12,and the correlation coefficient increased by 0.22 compared to the LRM.An LRM is not sufficient to reproduce the aerosol variations associated with fine-scale topographic forcing,such as in the eastern marginal region of the TP.The difference between hydrophilic aerosols in an HRM and LRM is caused by the divergence of the simulated relative humidity(RH).More reasonable distributions and variations of RH are conducive to simulating hydrophilic aerosols.An increase of the 10-m wind speed in winter by an HRM leads to increased dust emissions.The simulated aerosol DREs at the top of the atmosphere(TOA)and at the surface by the HRM are–0.76 W m^(–2)and–8.72 W m^(–2)over the TP,respectively.Both resolution models can capture the key feature that dust TOA DRE transitions from positive in spring to negative in the other seasons.
基金supported by the Key Laboratory of Meteorological Disaster of Ministry of Education (KLME050202 and 050205)the Jiangsu provincial 333 Talent Cultivation Projectthe Jiangsu provincial Qing-Lan Project and the Special Funds for Public Welfare of China [Grant No. GYHY(QX) 2007-6-26]Education Foundation, Hong Kong
文摘By using a surface air temperature index (SATI) averaged over the eastern Tibetan Plateau (TP), investigation is conducted on the short-term climate variation associated with the interannual air warming (or cooling) over the TP in each summer month. Evidence suggests that the SATI is associated with a consistent teleconnection pattern extending from the TP to central-western Asia and southeastern Europe. Associated rainfall changes include, for a warming case, a drought in northern India in May and June, and a stronger mei-yu front in June. The latter is due to an intensified upper-level northeasterly in eastern China and a wetter and warmer condition over the eastern TP. In the East Asian regions, the time-space distributions of the correlation patterns between SATI and rainfall are more complex and exhibit large differences from month to month. Some studies have revealed a close relationship between the anomalous heating over the TP and the rainfall anomaly along the Yangtze River valley appearing in the summer on a seasonal mean time-scale, whereas in the present study, this relationship only appears in June and the signal's significance becomes weaker after the long-term trend in the data was excluded. Close correlations between SATI and the convection activity and SST also occur in the western Pacific in July and August: A zonally-elongated warm tone in the SST in the northwestern Pacific seems to be a passive response of the associated circulation related to a warm SATI. The SATI-associated teleconnection pattern provides a scenario consistently linking the broad summer rainfall anomalies in Europe, central-western Asia, India, and East Asia.
基金supported by Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q09-06 andKZCX2-YW-T11)National Natural Science Foundation of China(Grant Nos. 40830638 and 41101021)
文摘The altitude effect of δ18O is essential for the study of the paleo-elevation reconstruction and possible to be solved through modern process studies. This study presents new δ18O results from southeast Tibetan Plateau along two transects, the Zayu transect and the Lhasa-Nyang transect, with δ18O data from June to September representative of monsoon period and δ18O data during the rest of the year of non-monsoon period. Altitude effect outweighs the longitude and latitude effects in determining regional δ18O variation spatially. Relevant δ18O data from previous studies in the nearby region have also been combined to comprehensively understand the influence of different moisture sources on δ18O from local scale to regional scale. The δ18O in surface water in the southeast Tibetan Plateau and its nearby regions influenced by the Indian summer monsoon shows that single dominant moisture source or simple moisture sources lead to smaller altitudinal lapse rate, whilst growing contributions from local convection to precipitation enlarge δ18O-altitude rate. It thereupon reveals the significance of the Indian summer monsoon to the altitude effect of δ18O in surface water, and the complicated effect of local convection or westerlies evolution to the variation of altitudinal lapse rate. Paleo-monsoon evolution therefore should be considered when altitude effect is applied to paleo-elevation reconstruction for the Tibetan Plateau.
基金supported by National Key Technology R&D Program of China(2019YFD1002204)and S&T Development Fund of CAMS.
文摘Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still remains uncertain.In this study,its responses to climate change were investigated using daily weather data and agriculture data during 1961–2018.The results showed that the annual mean air temperature over the TP increased at 0.33°C per decade during 1961–2018,and the rate of warming increased with altitude,reaching 0.41°C per decade at altitudes of 4500–4700 m.The growing degree days(GDDs)increased by 9.6%during 2011–2018 compared with the 1960s,whereas low temperature degree days(LDDs)decreased by 40.3%over the same period,indicating that the thermal conditions for highland barley cultivation have improved.A strong relationship was observed between the yield of highland barley and LDDs(−0.76,p<0.001)than GDDs(0.58,p<0.001)in Xizang,where sufficient irrigation water is available from the melting of snow cover or glaciers.In Sichuan,with abundant precipitation,significant correlations were noticed between county-level barley yield and GDDs and LDDs(0.60,p<0.001;−0.65,p<0.001).In Qinghai,the dry regions,county-level yields were influenced significantly by temperature and precipitation.These results indicated that climate warming was beneficial to highland barley yield in most region of the TP,mainly due to decreased LDDs.The potential altitude at which highland barley cultivation is feasible increased by approximately 280–484 m during 2016–2018,compared with 1981–1983.In Xizang,highland barley could be cultivated up to an altitude of 4507 m a.s.l.between 2016 and 2018,and it increased to 4179 m a.s.l.in Qinghai.These results could help local government to take actions to adapt to global warming and improve food security.
基金Supported by the Chinese Academy of Sciences and National Natural Science Foundation of China (Grant Nos. 40830638 and 40571039)Ministry of Science and Technology of the People’s Republic of China (Grant No. 2005CB422004)
文摘The δ 18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform(TORP)is studied, with the focus on the altitude effect of δ 18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ 18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ 18O composition in plateau precipitation and river water. The δ 18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ 18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ 18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ 18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ 18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.
基金This work is supported by the National Key Research and Development Program of China[grant number 2018YFD1100104]the National Key Research and Development Program of China[grant number 2020YFC1521900].
文摘Most lakes have undergone significant changes on the Tibetan Plateau in recent decades,affecting water resources on the Tibetan Plateau and its surrounding areas.In this paper,we investigated the variations of 25 lakes in five sub-regions on the Tibetan Plateau from 1972 to 2019 based on SRTM DEM data and Landsat imagery.We used a method to derive lake-levels based on DEM and lake boundaries delineated from Landsat imagery,and then calculated the changes in lake area,level,and volume in 1972 to 2019.We also analyzed the potential impacts of temperature,precipitation,glacial and permafrost melting in lake changes during this period.The results show that the lakes tended to shrink until 2010 in southern and western plateau,after which they began to expand gradually but the overall trend is still shrinking.Limited meltwater from glaciers and permafrost and low precipitation are the main reasons for their shrinkage.The lakes in the central plateau,northwest plateau and northeast plateau tend to expand overall.The reason for the expansion of the lakes is not only precipitation but also the melting of glaciers and permafrost.Overall,the lake changes have gone through 3 phases,namely a slight decrease during 1972-2000,a rapid increase during 2000-2010,and a slowdown in the last decade(2010-2019).Multiple factors such as temperature,precipitation,the state of glaciers and permafrost have contributed to the changes in the lake.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 40523001, 40405016 & 40475027) Climate Change Special Project of China Meteorological Administration (Grant No. CCSF2005-2-QH37).
文摘A striking climate warming over the Ti- betan Plateau during the last decades has been re- vealed by many studies, but evidence linking it to human activity is insufficient. By using historical ob- servations, here we show that the in situ climate warming is accompanied by a distinct decreasing trend of the diurnal range of surface air temperature. The ERA40 reanalysis further indicates that there seems to be a coherent warming trend near the tro- popause but a cooling trend in the lower stratosphere. Moreover, all these features can be reproduced in two coupled climate models forced by observed CO2 concentration of the 20th century but cannot be pro- duced by the fixed external conditions before the industrial revolution. These suggest that the recent climate warming over the Tibetan Plateau primarily results from the increasing anthropogenic green- house gases emissions, and impacts of the increased greenhouse gases emissions upon the climate change in the plateau are probably more serious than the rest of the world.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40571039, 40701037 and 40830638) and group program of Chinese Academy of Sciences
文摘Seasonal δ 18O variation in water on the southeast Tibetan Plateau has been studied, showing the consistent variation pattern of δ 18O with altitude indicative of relevant atmospheric circulation processes. Study shows a similar variation pattern of fixed-site river water δ 18O with that of the precipitation δ 18O in southeast Tibet. δ 18O in regional rivers in southeast Tibet demonstrates a gradual depletion with increasing altitude, though the rates vary seasonally. The most depleted river 18O occurs during the monsoon period, with the lowest δ 18O/altitude lapse rate. The river 18O during the westerly period is also depleted, together with low δ 18O/altitude lapse rate. The pre-monsoon rivers witness the most enriched 18O with least significant correlation coefficient with the linear regression, whilst the postmonsoon rivers witness the largest δ 18O/altitude lapse rate. Different coherence of seasonal δ 18O variation with the altitude effect is attributed to different moisture supplies. Though sampling numbers vary with seasons, the δ 18O-H linear correlation coefficients all reach the 0.05 confidence level, thus witnessing the variation features of δ 18O in seasonal river water due to the influence of atmospheric general circulation and land surface processes revealed from the altitudinal lapse rates.
基金The Major State Basic Research Development of China,No.2015CB954101National Mountain Flood Disaster Investigation Project,No.SHZH-IWHR-57+2 种基金The National Science and Technology Basic Special Project,No.2011FY11040-2National Natural Science Foundation of China,No.41171332The Surveying and Mapping Geoinformation Nonprofit Specific Project,No.201512033
文摘Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and analysis of climatic information. Data from previous research on 35 alpine lakes on the Tibetan Plateau were used to investigate changes in lake water level and area. In terms of temporal changes, the area of the 35 alpine lakes could be divided into five groups: rising, falling-rising, rising-falling, fluctuating, and falling. In terms of spatial changes, the area of alpine lakes in the Himalayan Mountains, the Karakoram Mountains, and the Qaidam Basin tended to decrease; the area of lakes in the Naqu region and the Kunlun Mountains increased; and the area of lakes in the Hoh Xil region and Qilian Mountains fluctuated. Changes in lake water level and area were correlated with regional changes in climate. Reasons for changes in these lakes on the Tibetan Plateau were analyzed, including precipitation and evaporation from meteorological data, glacier meltwater from the Chinese glacier inventories. Several key problems, e.g. challenges of monitoring water balance, limitations to glacial area detection, uncertainties in detecting lake water-level variations and variable region boundaries of lake change types on the Tibetan Plateau were discussed. This research has most indicative significance to regional climate change.
基金Supported by the National Natural Science Foundation of China (41171345)Chinese Academy of Sciences (KZCX2-YW-QN303)Fundamental Research Funds for Central Universities of China
文摘Climate variability is an important inherent characteristic of climate and it varies on all timescales. Through examination of temperature variability on multiple temporal scales at 63 stations over the eastern and central Tibetan Plateau (TP) during 1960-2008, we find decreasing trends in daily and intraannual temperature, especially in cold seasons (autumn and winter). These changes are more sensitive than those in the eastern China coastal region at the same latitude and indicate an asymmetric change of temperature, with hourly, daily, and monthly trends in cold periods stronger than those in warm periods during the recent years. The variation of interannual temperature is complex, showing an increasing trend in autumn and winter and decreasing trend in spring and summer, which is similar to those in the northern polar region. The changes of multiscale variability of temperature are mainly related to changes of atmospheric water vapor, cloudiness, anthropogenic aerosols, monsoon-driven climate, and some local factors. To find the influences of local conditions on temperature variability, we analyze the effects of altitude, topography, and urbanization. The results show that elevation is strongly and positively related to diurnal temperature range (DTR) and slightly positively related to interannual temperature variability (IVT), but intraannual temperature variability shows no clear elevation dependency. Topography and urbanization also play important roles in multiscale temperature variability. Finally, strong relationships are observed between temperature variability on each scale and different extreme indices.
文摘近几十年中随着全球气候环境变化,青藏高原处于变暖变湿过程之中,植被生长发生了显著变化。基于卫星遥感归一化植被指数(NDVI),采用增强回归树模型(BRT)定量分析了1982—2015年影响青藏高原植被生长变化的主要环境因子的相对重要性。结果表明:(1)整个青藏高原生长季(6—9月份)空间平均NDVI和降水呈上升趋势(1.265×10^(-4)a^(-1)和0.746 mm/a,P>0.05);温度和土壤湿度呈现显著增加趋势(0.048℃/a和3.954×10^(-4)a^(-1),P<0.01);向下短波辐射显著减小(-0.070 W m^(-2)a^(-1),P<0.01)。(2)青藏高原34.0%地区NDVI表现出显著增加趋势,主要分布在青藏高原北部大部分地区和西部部分区域;9.2%地区NDVI呈显著减小趋势,主要位于青藏高原东部地区。(3)土壤湿度、年均温、年降水和向下短波辐射分别解释了生长季NDVI变化的42%,19%,10%和9%。(4)土壤湿度、年均温、年降水和向下短波辐射对青藏高原植被生长动态影响的相对大小具有明显的空间差异特征。温度上升是青藏高原东北部和中部部分地区NDVI变化的首要因素(相对贡献率>40%),而土壤湿度增加是青藏高原西南部及东南部分地区NDVI变化的主要原因(相对贡献率>50%)。总体上,温度上升及由此所导致的冰冻圈消融引起的土壤含水量上升是近几十年青藏高原植被生长动态快速变化的主要原因。