Given a graph G, a subgraph C is called a clique of G if C is a complete subgraph of G maximal under inclusion and |C| ≥2. A clique-transversal set S of G is a set of vertices of G such that S meets all cliques of ...Given a graph G, a subgraph C is called a clique of G if C is a complete subgraph of G maximal under inclusion and |C| ≥2. A clique-transversal set S of G is a set of vertices of G such that S meets all cliques of G. The clique-transversal number, denoted as τC(G), is the minimum cardinality of a clique-transversal set in G. The clique-graph of G, denoted as K(G), is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques in G have nonempty intersection. Let F be a class of graphs G such that F = {G| K(G) is a tree}. In this paper the graphs in F having independent clique-transversal sets are shown and thus τC(G)/|G| ≤ 1/2 for all G ∈F.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10571117), and the Development Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ04)
文摘Given a graph G, a subgraph C is called a clique of G if C is a complete subgraph of G maximal under inclusion and |C| ≥2. A clique-transversal set S of G is a set of vertices of G such that S meets all cliques of G. The clique-transversal number, denoted as τC(G), is the minimum cardinality of a clique-transversal set in G. The clique-graph of G, denoted as K(G), is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques in G have nonempty intersection. Let F be a class of graphs G such that F = {G| K(G) is a tree}. In this paper the graphs in F having independent clique-transversal sets are shown and thus τC(G)/|G| ≤ 1/2 for all G ∈F.