Background Clock circadian regulator(CLOCK)is a core factor of the mammalian biological clock system in regulat-ing female fertility and ovarian physiology.However,CLOCK’s specific function and molecular mechanism in...Background Clock circadian regulator(CLOCK)is a core factor of the mammalian biological clock system in regulat-ing female fertility and ovarian physiology.However,CLOCK’s specific function and molecular mechanism in porcine granulosa cells(GCs)remain unclear.In this study,we focused on CLOCK’s effects on GC proliferation.Results CLOCK significantly inhibited cell proliferation in porcine GCs.CLOCK decreased the expression of cell cycle-related genes,including CCNB1,CCNE1,and CDK4 at the mRNA and protein levels.CDKN1A levels were upregulated by CLOCK.ASB9 is a newly-identified target of CLOCK that inhibits GC proliferation;CLOCK binds to the E-box element in the ASB9 promoter.Conclusions These findings suggest that CLOCK inhibits the proliferation of porcine ovarian GCs by increasing ASB9 level.展开更多
Circadian rhythms are natural rhythms that widely exist in all creatures,and regulate the processes and physiological functions of various biochemical reactions.The circadian clock is critical for cancer occurrence an...Circadian rhythms are natural rhythms that widely exist in all creatures,and regulate the processes and physiological functions of various biochemical reactions.The circadian clock is critical for cancer occurrence and progression.Its function is regulated by metabolic activities,and the expression and transcription of various genes.This review summarizes the composition of the circadian clock;the biological basis for its function;its relationship with,and mechanisms in,cancer;its various functions in different cancers;the effects of anti-tumor treatment;and potential therapeutic targets.Research in this area is expected to advance understanding of circadian locomotor output cycles kaput(CLOCK)and brain and muscle ARNT-like protein 1(BMAL1)in tumor diseases,and contribute to the development of new anti-tumor treatment strategies.展开更多
The yeast, Saccharomyces cerevisiae, has an ENOX1 activity with a period length of 24 min similar to that of other eukaryotes. In contrast to other eukaryotes, however, Saccharomyces cerevisiae has a second ENOX1-like...The yeast, Saccharomyces cerevisiae, has an ENOX1 activity with a period length of 24 min similar to that of other eukaryotes. In contrast to other eukaryotes, however, Saccharomyces cerevisiae has a second ENOX1-like activity with a period length of 25 min. The latter is distinguishable from the traditional ENOX1 on the basis of the longer period length along with resistance to an ENOX1 inhibitor, simalikalactone D, and failure to be phased by melatonin. In addition, two periods are apparent in measurements of oxygen consumption indicating that the consumption of oxygen to water occurs independently by homodimers of both of the two forms of ENOX. Based on the measurements of glyceraldehyde-3- phosphate dehydrogenase, S. cerevisiae exhibits circadian activity maxima at 24 and 25 h together with a 40 h period possibly representing the 40 min metabolic rhythm of yeast not observed in our measurement of oxygen consumption and normally observed only with continuous cultures. The findings are indicative of at least three independent time-keeping systems being operative in a single cell.展开更多
The NIM4 cesium fountain clock has been operating stably and sub-continually since Aug. 2003. In this paper we present improvements on NIM4 in 2005-2006 and the most recent evaluation for its frequency shifts with an ...The NIM4 cesium fountain clock has been operating stably and sub-continually since Aug. 2003. In this paper we present improvements on NIM4 in 2005-2006 and the most recent evaluation for its frequency shifts with an uncertainty of 5E-15. A 220 days comparison between NIM4 and GPS showed an agreement of 2E-14. Finally the construction of a NIM5 transportable cesium fountain clock is briefly reported.展开更多
The circadian clock is a fundamental endogenous mechanism of adaptation that coordinates the physiology and behavior of most organisms with diel variations in the external environment to maintain temporal homeostasis....The circadian clock is a fundamental endogenous mechanism of adaptation that coordinates the physiology and behavior of most organisms with diel variations in the external environment to maintain temporal homeostasis.Diatoms are the major primary producers in the ocean.However,little is known about the circadian clock in marine diatoms compared with other organisms.Here,we investigated circadian clock genes,their expression patterns,and responses to environmental stimuli such as light,nitrogen and phosphorus in two marine diatoms,Skeletonema costatum and Phaeodactylum tricornutum,using a combination of q RT-PCR and bioinformatic analysis.We identified 17 and 18 circadian clock genes in P.tricornutum and S.costatum,respectively.Despite significant evolutionary differences,these genes were similar to those of the higher plant Arabidopsis.We also established a molecular model for the marine diatom circadian clock comprising an input pathway,core oscillator,output pathway,and valve effector.Notably,the expression patterns of core clock genes(circadian clock associated 1(CCA1),late elongated hypocotyl(LHY)and timing of cab 1(TOC1))in both species differed from those of terrestrial plants.Furthermore,the expression of these genes was influenced by variations in ambient light,nitrogen and phosphorus availability.Although marine diatoms and higher plants share common circadian clock components,their clock genes have diverged throughout evolution,likely as a result of adapting to contrasting environments.展开更多
The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC....The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC.The phosphorylation/dephosphorylation state of KaiC exhibits a circadian oscillator.KaiA and KaiB activate KaiC phosphorylation and dephosphorylation respectively.CikA competing with KaiA for the same binding site on KaiB affects the phosphorylation state of KaiC.Quinone is a signaling molecule for entraining the cyanobacterial circadian clock which is oxidized at the onset of darkness and reduced at the onset of light,reflecting the environmental light-dark cycle.KaiA and CikA can sense external signals by detecting the oxidation state of quinone.However,the entrainment mechanism is far from clear.We develop an enhanced mathematical model including oxidized quinone sensed by KaiA and CikA,with which we present a detailed study on the entrainment of the cyanobacteria circadian clock induced by quinone signals.We find that KaiA and CikA sensing oxidized quinone pulse are related to phase advance and delay,respectively.The time of oxidized quinone pulse addition plays a key role in the phase shifts.The combination of KaiA and CikA is beneficial to the generation of entrainment,and the increase of signal intensity reduces the entrainment phase.This study provides a theoretical reference for biological research and helps us understand the dynamical mechanisms of cyanobacteria circadian clock.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic st...This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.展开更多
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble...A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.展开更多
Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment.Among these processes,the floral transition is essential to ensure reproductive success and is finely...Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment.Among these processes,the floral transition is essential to ensure reproductive success and is finelyregulated by several internal andexternal genetic networks.The photoperiodic pathway,which controls plant response to day length,is one of the most important pathways controlling flowering.In Arabidopsis photoperiodic flowering,CONSTANS(CO)is the central gene activating the expression of the florigen FLOWERING LOCUS T(FT)in the leaves at the end of a long day.The circadian clock strongly regulates Co expression.However,to date,no evidence has been reported regarding a feedbackloop from the photoperiod pathway back to the circadian clock.Using transcriptional networks,we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway.Gene expression,chromatin immunoprecipitation experiments,and phenotypic analysis allowed us to elucidate the role of Co over the circadian clock.Plants with altered cO expression showed a different internal clock period,measured by daily leaf rhythmic movements.We showed that co upregulates the expression of key genes related to the circadian clock,such as CCA1,LHY,PRR5,and Gl,at the end of a long day by bindingto specific sites on their promoters.Moreover,a high numberof PRR5-repressed target genes are upregulated by CO,and this could explain the phase transition promoted by CO.The CO-PRR5 complex interacts with the bZiP transcriptionfactor HY5andhelps to localize the complex in the promoters of clock genes.Taken together,our results indicate that there may be a feedback loop in which co communicates back to the circadian clock,providing seasonal information to the circadian system.展开更多
The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders....The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.展开更多
Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are c...Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are classified into long-day,short-day,and day-neutral plants based on light requirements for floral initiation.Although the molecular mechanisms that govern this differentiation remain incompletely understood,studies have consistently shown that the circadian clock plays a central role in regulating photoperiod response across diverse plant species.However,there is a scarcity of reviews describing the regulatory network linking the circadian clock with photoperiodic flowering.This review summarizes that regulatory network,focusing on the distinct roles of clock genes in long-day and short-day plants.We also discuss the strategies of clock gene mutations contributing to geographic variation in longday and short-day crops.展开更多
The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was...The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was attached to the cage's base,whereas the Hall sensor was attached to the cage's cover.Then,the RJ25 adaptor relayed the running signal to the main control board.Finally,the main control board was connected to the USB port of the computer with the USB connection.Data were collected using the online-accessible,self-created software Magturning.Through Magturning,generated data were saved and exported in real time.Afterward,the device was validated by collecting data on the locomotor activities of mice under dif-ferent light conditions.In conclusion,this new device can record circadian activity of rodents.Our device is appropriate for interdisciplinary investigations related to biological clock research.展开更多
As the body’s internal clock,the circadian rhythm regulates the energy expenditure,appetite,and sleep.There exists a close relationship between the host circadian rhythm and gut microbiota.In this work,a circadian di...As the body’s internal clock,the circadian rhythm regulates the energy expenditure,appetite,and sleep.There exists a close relationship between the host circadian rhythm and gut microbiota.In this work,a circadian disorder mouse model induced by constant darkness(CD)was constructed to investigate the regulating effects of capsaicin(CAP)on disturbances of metabolism homeostasis and gut microbiota in the respect of circadian rhythm-related mechanisms.Our results indicated that CAP reduced weight gain induced by circadian rhythm disorder in mice by inhibiting fat accumulation in liver and adipose tissue.The rhythmic expressions of circadian clock genes and lipid-metabolism related genes in liver were also recovered by CAP.Microbial study using 16S rRNA sequencing revealed that CAP modulated the gut microbiota richness,diversity and composition,and restored diurnal oscillations of gut microbes at the phylum and family level.These results indicated that CAP could alleviate CD-induced hepatic clock gene disruption and gut microbiota dysbiosis in mice,providing theoretical basis for CAP to be used as a muti-functional ingredient with great healthpromoting effects.展开更多
Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency referenc...Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.展开更多
Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have un...Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels,including transcriptional,translational,and post-translational processes,resulting from cellular stress and circadian derangements.The circadian clock emerges as a key regulator,sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes,such as stem-cell function,cellular stress responses,and inter-tissue communication,which become disrupted during aging.Given the crucial role of hypothalamic circuits in regulating organismal physiology,metabolic control,sleep homeostasis,and circadian rhythms,and their dependence on these processes,strategies aimed at enhancing hypothalamic and circadian function,including pharmacological and non-pharmacological approaches,offer systemic benefits for healthy aging.Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions,like the hypothalamus,while reducing side effects associated with systemic drug delivery,thereby presenting new therapeutic possibilities for diverse age-related conditions.展开更多
Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external...Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.展开更多
Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocks...Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .展开更多
Plants are capable of regulating their shoot architecture in response to diverse internal and external environments.The circadian clock is an adaptive mechanism that integrates information from internal and ambient co...Plants are capable of regulating their shoot architecture in response to diverse internal and external environments.The circadian clock is an adaptive mechanism that integrates information from internal and ambient conditions to help plants cope with recurring environmental fluctuations.Despite the current understanding of plant circadian clock and genetic framework underlying plant shoot architecture,the intricate connection between these two adaptive mechanisms remains largely unclear.In this study,we elucidated how the core clock gene LUX ARRHYTHMO(LUX)regulates shoot architecture in the model legume plant Medicago truncatula.We show that mtlux mutant displays increased main stem height,reduced lateral shoot length,and decreased the number of lateral branches and biomass yield.Gene expression analysis revealed that Mt LUX regulated shoot architecture by repressing the expression of strigolactone receptor MtD14 and MtTB1/MtTCP1A,a TCP gene that functions centrally in modulating shoot architecture.In vivo and in vitro experiments showed that Mt LUX directly binds to a cis-element in the promoter of MtTB1/MtTCP1A,suggesting that Mt LUX regulates branching by rhythmically suppressing MtTB1/MtTCP1A.This work demonstrates the regulatory effect of the circadian clock on shoot architecture,offering a new understanding underlying the genetic basis towards the flexibility of plant shoot architecture.展开更多
基金supported by National Natural Science Foundation of China (32272849)China Agriculture Research System of MOF and MARA
文摘Background Clock circadian regulator(CLOCK)is a core factor of the mammalian biological clock system in regulat-ing female fertility and ovarian physiology.However,CLOCK’s specific function and molecular mechanism in porcine granulosa cells(GCs)remain unclear.In this study,we focused on CLOCK’s effects on GC proliferation.Results CLOCK significantly inhibited cell proliferation in porcine GCs.CLOCK decreased the expression of cell cycle-related genes,including CCNB1,CCNE1,and CDK4 at the mRNA and protein levels.CDKN1A levels were upregulated by CLOCK.ASB9 is a newly-identified target of CLOCK that inhibits GC proliferation;CLOCK binds to the E-box element in the ASB9 promoter.Conclusions These findings suggest that CLOCK inhibits the proliferation of porcine ovarian GCs by increasing ASB9 level.
基金supported by the National Natural Science Foundation of China(Grant Nos.81621003,32000533,82073059,and 81872020)。
文摘Circadian rhythms are natural rhythms that widely exist in all creatures,and regulate the processes and physiological functions of various biochemical reactions.The circadian clock is critical for cancer occurrence and progression.Its function is regulated by metabolic activities,and the expression and transcription of various genes.This review summarizes the composition of the circadian clock;the biological basis for its function;its relationship with,and mechanisms in,cancer;its various functions in different cancers;the effects of anti-tumor treatment;and potential therapeutic targets.Research in this area is expected to advance understanding of circadian locomotor output cycles kaput(CLOCK)and brain and muscle ARNT-like protein 1(BMAL1)in tumor diseases,and contribute to the development of new anti-tumor treatment strategies.
文摘The yeast, Saccharomyces cerevisiae, has an ENOX1 activity with a period length of 24 min similar to that of other eukaryotes. In contrast to other eukaryotes, however, Saccharomyces cerevisiae has a second ENOX1-like activity with a period length of 25 min. The latter is distinguishable from the traditional ENOX1 on the basis of the longer period length along with resistance to an ENOX1 inhibitor, simalikalactone D, and failure to be phased by melatonin. In addition, two periods are apparent in measurements of oxygen consumption indicating that the consumption of oxygen to water occurs independently by homodimers of both of the two forms of ENOX. Based on the measurements of glyceraldehyde-3- phosphate dehydrogenase, S. cerevisiae exhibits circadian activity maxima at 24 and 25 h together with a 40 h period possibly representing the 40 min metabolic rhythm of yeast not observed in our measurement of oxygen consumption and normally observed only with continuous cultures. The findings are indicative of at least three independent time-keeping systems being operative in a single cell.
文摘The NIM4 cesium fountain clock has been operating stably and sub-continually since Aug. 2003. In this paper we present improvements on NIM4 in 2005-2006 and the most recent evaluation for its frequency shifts with an uncertainty of 5E-15. A 220 days comparison between NIM4 and GPS showed an agreement of 2E-14. Finally the construction of a NIM5 transportable cesium fountain clock is briefly reported.
基金The National Natural Science Foundation of China under contract Nos 41425021 and 41706131the National Key Research and Development Program of China under contract No.2017YFC1404302the“Ten Thousand Talents Program”for Leading Talents in Science and Technological Innovation to Dazhi Wang。
文摘The circadian clock is a fundamental endogenous mechanism of adaptation that coordinates the physiology and behavior of most organisms with diel variations in the external environment to maintain temporal homeostasis.Diatoms are the major primary producers in the ocean.However,little is known about the circadian clock in marine diatoms compared with other organisms.Here,we investigated circadian clock genes,their expression patterns,and responses to environmental stimuli such as light,nitrogen and phosphorus in two marine diatoms,Skeletonema costatum and Phaeodactylum tricornutum,using a combination of q RT-PCR and bioinformatic analysis.We identified 17 and 18 circadian clock genes in P.tricornutum and S.costatum,respectively.Despite significant evolutionary differences,these genes were similar to those of the higher plant Arabidopsis.We also established a molecular model for the marine diatom circadian clock comprising an input pathway,core oscillator,output pathway,and valve effector.Notably,the expression patterns of core clock genes(circadian clock associated 1(CCA1),late elongated hypocotyl(LHY)and timing of cab 1(TOC1))in both species differed from those of terrestrial plants.Furthermore,the expression of these genes was influenced by variations in ambient light,nitrogen and phosphorus availability.Although marine diatoms and higher plants share common circadian clock components,their clock genes have diverged throughout evolution,likely as a result of adapting to contrasting environments.
基金Project supported by the National Natural Science Foundation of China(Grant No.11672177).
文摘The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC.The phosphorylation/dephosphorylation state of KaiC exhibits a circadian oscillator.KaiA and KaiB activate KaiC phosphorylation and dephosphorylation respectively.CikA competing with KaiA for the same binding site on KaiB affects the phosphorylation state of KaiC.Quinone is a signaling molecule for entraining the cyanobacterial circadian clock which is oxidized at the onset of darkness and reduced at the onset of light,reflecting the environmental light-dark cycle.KaiA and CikA can sense external signals by detecting the oxidation state of quinone.However,the entrainment mechanism is far from clear.We develop an enhanced mathematical model including oxidized quinone sensed by KaiA and CikA,with which we present a detailed study on the entrainment of the cyanobacteria circadian clock induced by quinone signals.We find that KaiA and CikA sensing oxidized quinone pulse are related to phase advance and delay,respectively.The time of oxidized quinone pulse addition plays a key role in the phase shifts.The combination of KaiA and CikA is beneficial to the generation of entrainment,and the increase of signal intensity reduces the entrainment phase.This study provides a theoretical reference for biological research and helps us understand the dynamical mechanisms of cyanobacteria circadian clock.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金Project supported by the Space Application System of China Manned Space Programthe Youth Innovation Promotion Association,CAS。
文摘This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3900701)the Science and Technology Plan Project of the State Administration for Market Regulation of China (Grant No.2023MK178)the National Natural Science Foundation of China (Grant No.42227802)。
文摘A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.
基金a European Union contract LONGFLOW,MSCAIF-2018-838317 and CSIC LONGFLOW,CONV_EXT_014.The financial support of the Spanish Ministry for Science and Innovations(MICINN/FEDER)PID2020-117018RB-I00 to F.V.is also acknowledged.We thank Prof.George Coupland(MPiPZ,Cologne,Germany)for discussion and critical reading of the manuscript.
文摘Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment.Among these processes,the floral transition is essential to ensure reproductive success and is finelyregulated by several internal andexternal genetic networks.The photoperiodic pathway,which controls plant response to day length,is one of the most important pathways controlling flowering.In Arabidopsis photoperiodic flowering,CONSTANS(CO)is the central gene activating the expression of the florigen FLOWERING LOCUS T(FT)in the leaves at the end of a long day.The circadian clock strongly regulates Co expression.However,to date,no evidence has been reported regarding a feedbackloop from the photoperiod pathway back to the circadian clock.Using transcriptional networks,we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway.Gene expression,chromatin immunoprecipitation experiments,and phenotypic analysis allowed us to elucidate the role of Co over the circadian clock.Plants with altered cO expression showed a different internal clock period,measured by daily leaf rhythmic movements.We showed that co upregulates the expression of key genes related to the circadian clock,such as CCA1,LHY,PRR5,and Gl,at the end of a long day by bindingto specific sites on their promoters.Moreover,a high numberof PRR5-repressed target genes are upregulated by CO,and this could explain the phase transition promoted by CO.The CO-PRR5 complex interacts with the bZiP transcriptionfactor HY5andhelps to localize the complex in the promoters of clock genes.Taken together,our results indicate that there may be a feedback loop in which co communicates back to the circadian clock,providing seasonal information to the circadian system.
基金financially supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08N291)the National Natural Science Foundation of China (31901689)the Natural Science Foundation of Guangdong Province,China (2021A1515012124)。
文摘The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.
基金This work was supported by Laboratory of Lingnan Modern Agriculture Project(NZ2021001)State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(SKICUSAa202007)+1 种基金Natural Science Foundation of Guangdong Province(2022A1515011027,2021A1515012148)the Double Firstclass Discipline Promotion Project(2023B10564004).
文摘Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are classified into long-day,short-day,and day-neutral plants based on light requirements for floral initiation.Although the molecular mechanisms that govern this differentiation remain incompletely understood,studies have consistently shown that the circadian clock plays a central role in regulating photoperiod response across diverse plant species.However,there is a scarcity of reviews describing the regulatory network linking the circadian clock with photoperiodic flowering.This review summarizes that regulatory network,focusing on the distinct roles of clock genes in long-day and short-day plants.We also discuss the strategies of clock gene mutations contributing to geographic variation in longday and short-day crops.
基金Startup Fund for scientific research,Fujian Medical University,Grant/Award Number:2020QH1039Joint Funds for the Innovation of Science and Technology,Fujian Province,Grant/Award Number:2020Y9114 and 2020Y9119。
文摘The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was attached to the cage's base,whereas the Hall sensor was attached to the cage's cover.Then,the RJ25 adaptor relayed the running signal to the main control board.Finally,the main control board was connected to the USB port of the computer with the USB connection.Data were collected using the online-accessible,self-created software Magturning.Through Magturning,generated data were saved and exported in real time.Afterward,the device was validated by collecting data on the locomotor activities of mice under dif-ferent light conditions.In conclusion,this new device can record circadian activity of rodents.Our device is appropriate for interdisciplinary investigations related to biological clock research.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08N291)the Science and Technology Program of Guangzhou,China(2023A04J0760)the Guangdong Basic and Applied Basic Research Foundation(2024A1515030058).
文摘As the body’s internal clock,the circadian rhythm regulates the energy expenditure,appetite,and sleep.There exists a close relationship between the host circadian rhythm and gut microbiota.In this work,a circadian disorder mouse model induced by constant darkness(CD)was constructed to investigate the regulating effects of capsaicin(CAP)on disturbances of metabolism homeostasis and gut microbiota in the respect of circadian rhythm-related mechanisms.Our results indicated that CAP reduced weight gain induced by circadian rhythm disorder in mice by inhibiting fat accumulation in liver and adipose tissue.The rhythmic expressions of circadian clock genes and lipid-metabolism related genes in liver were also recovered by CAP.Microbial study using 16S rRNA sequencing revealed that CAP modulated the gut microbiota richness,diversity and composition,and restored diurnal oscillations of gut microbes at the phylum and family level.These results indicated that CAP could alleviate CD-induced hepatic clock gene disruption and gut microbiota dysbiosis in mice,providing theoretical basis for CAP to be used as a muti-functional ingredient with great healthpromoting effects.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1402100)。
文摘Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
基金supported by National Council of Science and Technology(CONACYT)(grants FC 2016/2672 and FOSISS 272757),INMEGEN(09/2017/I)the Ministry of Education,Science,Technology and Innovation of Mexico City(SECTEI)(grant 228/2021).
文摘Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels,including transcriptional,translational,and post-translational processes,resulting from cellular stress and circadian derangements.The circadian clock emerges as a key regulator,sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes,such as stem-cell function,cellular stress responses,and inter-tissue communication,which become disrupted during aging.Given the crucial role of hypothalamic circuits in regulating organismal physiology,metabolic control,sleep homeostasis,and circadian rhythms,and their dependence on these processes,strategies aimed at enhancing hypothalamic and circadian function,including pharmacological and non-pharmacological approaches,offer systemic benefits for healthy aging.Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions,like the hypothalamus,while reducing side effects associated with systemic drug delivery,thereby presenting new therapeutic possibilities for diverse age-related conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274045)。
文摘Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.
文摘Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .
基金supported by Laboratory of Lingnan Modern Agriculture Project(NZ2021001)State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources(SKICUSA-a202007)Natural Science Foundation of Guangdong Province(2022A1515011027,2019A1515012009)。
文摘Plants are capable of regulating their shoot architecture in response to diverse internal and external environments.The circadian clock is an adaptive mechanism that integrates information from internal and ambient conditions to help plants cope with recurring environmental fluctuations.Despite the current understanding of plant circadian clock and genetic framework underlying plant shoot architecture,the intricate connection between these two adaptive mechanisms remains largely unclear.In this study,we elucidated how the core clock gene LUX ARRHYTHMO(LUX)regulates shoot architecture in the model legume plant Medicago truncatula.We show that mtlux mutant displays increased main stem height,reduced lateral shoot length,and decreased the number of lateral branches and biomass yield.Gene expression analysis revealed that Mt LUX regulated shoot architecture by repressing the expression of strigolactone receptor MtD14 and MtTB1/MtTCP1A,a TCP gene that functions centrally in modulating shoot architecture.In vivo and in vitro experiments showed that Mt LUX directly binds to a cis-element in the promoter of MtTB1/MtTCP1A,suggesting that Mt LUX regulates branching by rhythmically suppressing MtTB1/MtTCP1A.This work demonstrates the regulatory effect of the circadian clock on shoot architecture,offering a new understanding underlying the genetic basis towards the flexibility of plant shoot architecture.