Co1-x-yNix+ySb3-xSnx polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite CO1-xNixSb3-xSnx was investigate...Co1-x-yNix+ySb3-xSnx polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite CO1-xNixSb3-xSnx was investigated. A leap of electrical conductivity from the Co0.93Ni0.07Sb2.93Sn0.07 sample to the Co0.88Ni0.12Sb288Sn0.12 sample occurs during the measurement of electrical conductivity, indicating the adjustment of band structure by proper alloying. The results show that alloying enhances the power factor of the materials. On the basis of alloying, the thermoelectric properties of Coo.88Nio.12Sb2.ssSno.12 are improved by Ni-doping. The thermal conductivities of Ni-doping samples have no reduction, but their power factors have obvious enhancement. The power factor of Co0.81Ni0.09Sb2.88Sn0.12 reaches 3.0 mW-m-1·K-2 by Ni doping. The dimensionless thermoelectric figure of merit reaches 0.55 at 773 K for the unfilled Co0.81Ni0.19 Sb2.88Sn0.12,展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.50801054 and 51072104)the Research Award Fund for Outstanding Young Scientists in Shandong Province,China (No.BS2011CL031)
文摘Co1-x-yNix+ySb3-xSnx polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite CO1-xNixSb3-xSnx was investigated. A leap of electrical conductivity from the Co0.93Ni0.07Sb2.93Sn0.07 sample to the Co0.88Ni0.12Sb288Sn0.12 sample occurs during the measurement of electrical conductivity, indicating the adjustment of band structure by proper alloying. The results show that alloying enhances the power factor of the materials. On the basis of alloying, the thermoelectric properties of Coo.88Nio.12Sb2.ssSno.12 are improved by Ni-doping. The thermal conductivities of Ni-doping samples have no reduction, but their power factors have obvious enhancement. The power factor of Co0.81Ni0.09Sb2.88Sn0.12 reaches 3.0 mW-m-1·K-2 by Ni doping. The dimensionless thermoelectric figure of merit reaches 0.55 at 773 K for the unfilled Co0.81Ni0.19 Sb2.88Sn0.12,